Suppr超能文献

基于可降解介孔硅纳米颗粒的正电子发射断层成像引导光动力疗法用于个性化癌症免疫治疗。

Positron Emission Tomography-Guided Photodynamic Therapy with Biodegradable Mesoporous Silica Nanoparticles for Personalized Cancer Immunotherapy.

机构信息

Department of Pharmaceutical Science , University of Michigan , Ann Arbor , Michigan 48109 , United States.

Biointerfaces Institute , University of Michigan , Ann Arbor , Michigan 48109 , United States.

出版信息

ACS Nano. 2019 Oct 22;13(10):12148-12161. doi: 10.1021/acsnano.9b06691. Epub 2019 Sep 30.

Abstract

Photodynamic therapy (PDT) is an effective, noninvasive therapeutic modality against local tumors that are accessible to the source of light. However, it remains challenging to apply PDT for the treatment of disseminated, metastatic cancer. On the other hand, cancer immunotherapy offers a promising approach for generating systemic antitumor immune responses against disseminated cancer. Here we report a multifunctional nanomaterial system for the combination of PDT and personalized cancer immunotherapy and demonstrate their potency against local as well as disseminated tumors. Specifically, we have synthesized uniform and biodegradable mesoporous silica nanoparticles (bMSN) with an average size of ∼80 nm and large pore size of 5-10 nm for theranostic positron emission tomography (PET)-guided PDT and neoantigen-based cancer vaccination. Multiple neoantigen peptides, CpG oligodeoxynucleotide adjuvant, and photosensitizer chlorin e6 were coloaded into a bMSN nanoplatform, and PET imaging revealed effective accumulation of bMSN in tumors (up to 9.0% ID/g) after intravenous administration. Subsequent PDT with laser irradiation recruited dendritic cells to PDT-treated tumor sites and elicited neoantigen-specific, tumor-infiltrating cytotoxic T-cell lymphocytes. Using multiple murine models of bilateral tumors, we demonstrate strong antitumor efficacy of PDT-immunotherapy against locally treated tumors as well as distant, untreated tumors. Our findings suggest that the bMSN is a promising platform for combining imaging and PDT-enhanced personalized immunotherapy for the treatment of advanced cancer.

摘要

光动力疗法(PDT)是一种针对可接触光源的局部肿瘤的有效、非侵入性治疗方法。然而,将 PDT 应用于治疗弥散性、转移性癌症仍然具有挑战性。另一方面,癌症免疫疗法为产生针对弥散性癌症的全身抗肿瘤免疫反应提供了一种很有前途的方法。在这里,我们报告了一种多功能纳米材料系统,用于 PDT 和个性化癌症免疫疗法的联合,并证明了它们对局部和弥散性肿瘤的疗效。具体来说,我们合成了具有均匀尺寸和可生物降解性的介孔二氧化硅纳米粒子(bMSN),平均尺寸约为 80nm,孔径为 5-10nm,用于治疗正电子发射断层扫描(PET)引导的 PDT 和基于新抗原的癌症疫苗接种的诊断。将多个新抗原肽、CpG 寡脱氧核苷酸佐剂和光敏剂氯乙酮共负载到 bMSN 纳米平台中,PET 成像显示静脉注射后 bMSN 在肿瘤中的有效积累(高达 9.0%ID/g)。随后进行的 PDT 激光照射可招募树突状细胞到 PDT 治疗的肿瘤部位,并引发新抗原特异性、肿瘤浸润性细胞毒性 T 淋巴细胞。使用双侧肿瘤的多个小鼠模型,我们证明了 PDT-免疫疗法对局部治疗的肿瘤以及远处未治疗的肿瘤具有强大的抗肿瘤疗效。我们的研究结果表明,bMSN 是一种很有前途的平台,可用于将成像与 PDT 增强的个性化免疫疗法结合,以治疗晚期癌症。

相似文献

5
Photo-responsive hollow silica nanoparticles for light-triggered genetic and photodynamic synergistic therapy.
Acta Biomater. 2018 Aug;76:178-192. doi: 10.1016/j.actbio.2018.07.007. Epub 2018 Jul 4.
8
Smart Nanoreactors for pH-Responsive Tumor Homing, Mitochondria-Targeting, and Enhanced Photodynamic-Immunotherapy of Cancer.
Nano Lett. 2018 Apr 11;18(4):2475-2484. doi: 10.1021/acs.nanolett.8b00040. Epub 2018 Mar 26.

引用本文的文献

1
Apoptosis-inducing photodynamic therapy via dual-wavelength responsive ICG/Ce6 incorporated mesoporous silica nanoparticles in prostate cancer cells.
Photochem Photobiol Sci. 2025 Aug;24(8):1243-1264. doi: 10.1007/s43630-025-00759-y. Epub 2025 Jul 26.
3
A comprehensive review of using nanomaterials in cancer immunotherapy: Pros and Cons of clinical usage.
3 Biotech. 2025 Jul;15(7):205. doi: 10.1007/s13205-025-04362-x. Epub 2025 Jun 9.
4
Progress Update on STING Agonists as Vaccine Adjuvants.
Vaccines (Basel). 2025 Mar 31;13(4):371. doi: 10.3390/vaccines13040371.
5
Co-encapsulated Ce6 + CpG and biopeptide-modified liposomes for enhanced transdermal photo-immunotherapy of superficial tumors.
Mater Today Bio. 2025 Mar 13;32:101669. doi: 10.1016/j.mtbio.2025.101669. eCollection 2025 Jun.
6
Using aptamers for targeted delivery of RNA therapies.
Mol Ther. 2025 Apr 2;33(4):1344-1367. doi: 10.1016/j.ymthe.2025.02.047. Epub 2025 Mar 5.
7
Leveraging mesoporous silica nanomaterial for optimal immunotherapeutics against cancer.
In Vitro Model. 2023 Nov 13;2(5):153-169. doi: 10.1007/s44164-023-00061-0. eCollection 2023 Nov.
8
Transforming Medicine: Cutting-Edge Applications of Nanoscale Materials in Drug Delivery.
ACS Nano. 2025 Feb 4;19(4):4011-4038. doi: 10.1021/acsnano.4c09566. Epub 2025 Jan 17.

本文引用的文献

1
Engineering patient-specific cancer immunotherapies.
Nat Biomed Eng. 2019 Oct;3(10):768-782. doi: 10.1038/s41551-019-0436-x. Epub 2019 Aug 12.
3
Liposomal Delivery Enhances Immune Activation by STING Agonists for Cancer Immunotherapy.
Adv Biosyst. 2017 Feb;1(1-2). doi: 10.1002/adbi.201600013. Epub 2017 Jan 5.
4
Personalized vaccines for cancer immunotherapy.
Science. 2018 Mar 23;359(6382):1355-1360. doi: 10.1126/science.aar7112.
5
A facile approach to enhance antigen response for personalized cancer vaccination.
Nat Mater. 2018 Jun;17(6):528-534. doi: 10.1038/s41563-018-0028-2. Epub 2018 Mar 5.
7
Subcutaneous Nanodisc Vaccination with Neoantigens for Combination Cancer Immunotherapy.
Bioconjug Chem. 2018 Mar 21;29(3):771-775. doi: 10.1021/acs.bioconjchem.7b00761. Epub 2018 Feb 27.
8
Using immunotherapy to boost the abscopal effect.
Nat Rev Cancer. 2018 May;18(5):313-322. doi: 10.1038/nrc.2018.6. Epub 2018 Feb 16.
9
Albumin/vaccine nanocomplexes that assemble in vivo for combination cancer immunotherapy.
Nat Commun. 2017 Dec 5;8(1):1954. doi: 10.1038/s41467-017-02191-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验