Departments of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA.
Departments of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA.
J Neurochem. 2020 Jun;153(5):586-598. doi: 10.1111/jnc.14881. Epub 2019 Oct 17.
The diaphragm muscle comprises various types of motor units that are recruited in an orderly fashion governed by the intrinsic electrophysiological properties (membrane capacitance as a function of somal surface area) of phrenic motor neurons (PhMNs). Glutamate is the main excitatory neurotransmitter at PhMNs and acts primarily via fast acting AMPA and N-methyl-D-aspartic acid (NMDA) receptors. Differences in receptor expression may also contribute to motor unit recruitment order. We used single cell, multiplex fluorescence in situ hybridization to determine glutamatergic receptor mRNA expression across PhMNs based on their somal surface area. In adult male and female rats (n = 9) PhMNs were retrogradely labeled for analyses (n = 453 neurons). Differences in the total number and density of mRNA transcripts were evident across PhMNs grouped into tertiles according to somal surface area. A ~ 25% higher density of AMPA (Gria2) and NMDA (Grin1) mRNA expression was evident in PhMNs in the lower tertile compared to the upper tertile. These smaller PhMNs likely comprise type S motor units that are recruited first to accomplish lower force, ventilatory behaviors. In contrast, larger PhMNs with lower volume densities of AMPA and NMDA mRNA expression presumably comprise type FInt and FF motor units that are recruited during higher force, expulsive behaviors. Furthermore, there was a significantly higher cytosolic NMDA mRNA expression in small PhMNs suggesting a more important role for NMDA-mediated glutamatergic neurotransmission at smaller PhMNs. These results are consistent with the observed order of motor unit recruitment and suggest a role for glutamatergic receptors in support of this orderly recruitment. Cover Image for this issue: doi: 10.1111/jnc.14747.
膈肌肌由各种类型的运动单位组成,这些运动单位的募集顺序受膈神经运动神经元(PhMNs)固有电生理特性(作为体表面积函数的膜电容)的控制。谷氨酸是 PhMNs 的主要兴奋性神经递质,主要通过快速作用的 AMPA 和 N-甲基-D-天冬氨酸(NMDA)受体起作用。受体表达的差异也可能有助于运动单位募集顺序。我们使用单细胞,多重荧光原位杂交技术,根据体表面积确定 PhMNs 中的谷氨酸能受体 mRNA 表达。在成年雄性和雌性大鼠(n=9)中,用逆行标记法进行分析(n=453 个神经元)。根据体表面积将 PhMNs 分成三分之一,结果表明总 mRNA 转录本的数量和密度存在差异。与上三分之一相比,下三分之一的 PhMNs 中 AMPA(Gria2)和 NMDA(Grin1)mRNA 表达密度高约 25%。这些较小的 PhMNs 可能包含 S 型运动单位,这些运动单位首先募集以完成较低的力、通气行为。相比之下,具有较低 AMPA 和 NMDA mRNA 表达体积密度的较大 PhMNs 可能包含 FInt 和 FF 运动单位,这些运动单位在较高的力、驱逐行为中募集。此外,较小的 PhMNs 中细胞质 NMDA mRNA 表达显著升高,这表明 NMDA 介导的谷氨酸能神经传递在较小的 PhMNs 中具有更重要的作用。这些结果与观察到的运动单位募集顺序一致,并表明谷氨酸受体在支持这种有序募集中起作用。本期的封面图片:doi: 10.1111/jnc.14747.