Suppr超能文献

谷氨酸能传入随膈神经运动神经元的大小而变化。

Glutamatergic input varies with phrenic motor neuron size.

机构信息

Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota.

Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.

出版信息

J Neurophysiol. 2019 Oct 1;122(4):1518-1529. doi: 10.1152/jn.00430.2019. Epub 2019 Aug 7.

Abstract

Like all skeletal muscles, the diaphragm muscle accomplishes a range of motor behaviors by recruiting different motor unit types in an orderly fashion. Recruitment of phrenic motor neurons (PhMNs) is generally assumed to be based primarily on the intrinsic properties of PhMNs with an equal distribution of descending excitatory inputs to all PhMNs. However, differences in presynaptic excitatory input across PhMNs of varying sizes could also contribute to the orderly recruitment pattern. In the spinal cord of Sprague-Dawley rats, we retrogradely labeled PhMNs using cholera toxin B (CTB) and validated a robust confocal imaging-based technique that utilizes semiautomated processing to identify presynaptic glutamatergic (Glu) terminals within a defined distance around the somal membrane of PhMNs of varying size. Our results revealed an ~10% higher density of Glu terminals at PhMNs in the lower tertile of somal surface area. These smaller PhMNs are likely recruited first to accomplish lower force ventilatory behaviors of the diaphragm as compared with larger PhMNs in the upper tertile that are recruited to accomplish higher force expulsive behaviors. These results suggest that differences in excitatory synaptic input to PhMNs may also contribute to the orderly recruitment of diaphragm motor units. The distribution of excitatory glutamatergic synaptic input to phrenic motor neurons differs across motor neurons of varying size. These findings support the size principle of motor unit recruitment that underlies graded force generation in a muscle, which is based on intrinsic electrophysiological properties of motor neurons resulting from differences in somal surface area. A higher density of glutamatergic inputs at smaller, more excitable motor neurons substantiates the earlier and more frequent recruitment of these units.

摘要

与所有骨骼肌一样,膈肌通过有序地募集不同的运动单位类型来完成一系列运动行为。膈神经运动神经元(PhMNs)的募集通常被认为主要基于 PhMNs 的内在特性,所有 PhMNs 都有均等的下行兴奋性输入分布。然而,不同大小的 PhMNs 之间的突触前兴奋性输入的差异也可能有助于有序的募集模式。在 Sprague-Dawley 大鼠的脊髓中,我们使用霍乱毒素 B(CTB)逆行标记 PhMNs,并验证了一种强大的基于共聚焦成像的技术,该技术利用半自动处理来识别大小不同的 PhMNs 体膜周围定义距离内的突触前谷氨酸能(Glu)终端。我们的结果显示,在体表面积较小的 PhMNs 中,Glu 终端的密度约高 10%。与上三分之一中募集以完成更高力呼气行为的较大 PhMNs 相比,这些较小的 PhMNs 可能首先被募集以完成较低力的膈呼吸行为。这些结果表明,PhMNs 兴奋性突触输入的差异也可能有助于膈运动单位的有序募集。兴奋性谷氨酸能突触输入到膈神经运动神经元的分布在不同大小的运动神经元之间存在差异。这些发现支持运动单位募集的大小原则,该原则是基于运动神经元的内在电生理特性,由体表面积的差异产生,是肌肉产生分级力的基础。较小、兴奋性更高的运动神经元的谷氨酸能输入密度更高,证实了这些神经元的早期和更频繁募集。

相似文献

1
Glutamatergic input varies with phrenic motor neuron size.
J Neurophysiol. 2019 Oct 1;122(4):1518-1529. doi: 10.1152/jn.00430.2019. Epub 2019 Aug 7.
2
Disproportionate loss of excitatory inputs to smaller phrenic motor neurons following cervical spinal hemisection.
J Physiol. 2020 Oct;598(20):4693-4711. doi: 10.1113/JP280130. Epub 2020 Aug 19.
3
Heterogeneous glutamatergic receptor mRNA expression across phrenic motor neurons in rats.
J Neurochem. 2020 Jun;153(5):586-598. doi: 10.1111/jnc.14881. Epub 2019 Oct 17.
4
Size-dependent differences in mitochondrial volume density in phrenic motor neurons.
J Appl Physiol (1985). 2023 Jun 1;134(6):1332-1340. doi: 10.1152/japplphysiol.00021.2023. Epub 2023 Apr 6.
5
Cervical spinal hemisection alters phrenic motor neuron glutamatergic mRNA receptor expression.
Exp Neurol. 2022 Jul;353:114030. doi: 10.1016/j.expneurol.2022.114030. Epub 2022 Mar 2.
6
Phrenic motor neuron loss in aged rats.
J Neurophysiol. 2018 May 1;119(5):1852-1862. doi: 10.1152/jn.00868.2017. Epub 2018 Feb 7.
7
Phrenic motor neuron loss in an animal model of early onset hypertonia.
J Neurophysiol. 2020 May 1;123(5):1682-1690. doi: 10.1152/jn.00026.2020. Epub 2020 Apr 1.
9
Phrenic motor unit recruitment during ventilatory and non-ventilatory behaviors.
Respir Physiol Neurobiol. 2011 Oct 15;179(1):57-63. doi: 10.1016/j.resp.2011.06.028. Epub 2011 Jul 6.
10
Convergence of pattern generator outputs on a common mechanism of diaphragm motor unit recruitment.
Prog Brain Res. 2014;209:309-29. doi: 10.1016/B978-0-444-63274-6.00016-3.

引用本文的文献

1
Chemogenetic stimulation of phrenic motor output and diaphragm activity.
Elife. 2025 Jun 2;13:RP97846. doi: 10.7554/eLife.97846.
2
TNFα-mediated subcellular heterogeneity of succinate dehydrogenase activity in human airway smooth muscle cells.
Am J Physiol Lung Cell Mol Physiol. 2025 Jun 1;328(6):L792-L808. doi: 10.1152/ajplung.00396.2024. Epub 2025 Apr 23.
3
An update on spinal cord injury and diaphragm neuromotor control.
Expert Rev Respir Med. 2025 Jul;19(7):679-695. doi: 10.1080/17476348.2025.2495165. Epub 2025 Apr 22.
4
Heterogeneous distribution of mitochondria and succinate dehydrogenase activity in human airway smooth muscle cells.
FASEB Bioadv. 2024 May 28;6(6):159-176. doi: 10.1096/fba.2024-00047. eCollection 2024 Jun.
5
Chemogenetic stimulation of phrenic motor output and diaphragm activity.
bioRxiv. 2024 Nov 13:2024.04.12.589188. doi: 10.1101/2024.04.12.589188.
7
Pattern sensitivity of ampakine-hypoxia interactions for evoking phrenic motor facilitation in anesthetized rat.
J Neurophysiol. 2024 Feb 1;131(2):216-224. doi: 10.1152/jn.00315.2023. Epub 2023 Dec 20.
8
Cell-Based Measurement of Mitochondrial Function in Human Airway Smooth Muscle Cells.
Int J Mol Sci. 2023 Jul 15;24(14):11506. doi: 10.3390/ijms241411506.
9
Inhibitory Synaptic Influences on Developmental Motor Disorders.
Int J Mol Sci. 2023 Apr 9;24(8):6962. doi: 10.3390/ijms24086962.
10
Size-dependent differences in mitochondrial volume density in phrenic motor neurons.
J Appl Physiol (1985). 2023 Jun 1;134(6):1332-1340. doi: 10.1152/japplphysiol.00021.2023. Epub 2023 Apr 6.

本文引用的文献

1
Frequency-dependent lipid raft uptake at rat diaphragm muscle axon terminals.
Muscle Nerve. 2019 May;59(5):611-618. doi: 10.1002/mus.26421. Epub 2019 Feb 5.
2
Phrenic motoneuron structural plasticity across models of diaphragm muscle paralysis.
J Comp Neurol. 2018 Dec 15;526(18):2973-2983. doi: 10.1002/cne.24503. Epub 2018 Nov 8.
3
Diaphragm muscle function following midcervical contusion injury in rats.
J Appl Physiol (1985). 2019 Jan 1;126(1):221-230. doi: 10.1152/japplphysiol.00481.2018. Epub 2018 Sep 20.
4
Phrenic motor neuron loss in aged rats.
J Neurophysiol. 2018 May 1;119(5):1852-1862. doi: 10.1152/jn.00868.2017. Epub 2018 Feb 7.
5
Impact of glutamatergic and serotonergic neurotransmission on diaphragm muscle activity after cervical spinal hemisection.
J Neurophysiol. 2017 Sep 1;118(3):1732-1738. doi: 10.1152/jn.00345.2017. Epub 2017 Jun 28.
6
Diaphragm electromyographic activity following unilateral midcervical contusion injury in rats.
J Neurophysiol. 2017 Feb 1;117(2):545-555. doi: 10.1152/jn.00727.2016. Epub 2016 Nov 9.
7
BDNF effects on functional recovery across motor behaviors after cervical spinal cord injury.
J Neurophysiol. 2017 Feb 1;117(2):537-544. doi: 10.1152/jn.00654.2016. Epub 2016 Nov 9.
8
The peptidergic control circuit for sighing.
Nature. 2016 Feb 18;530(7590):293-297. doi: 10.1038/nature16964. Epub 2016 Feb 8.
9
TrkB gene therapy by adeno-associated virus enhances recovery after cervical spinal cord injury.
Exp Neurol. 2016 Feb;276:31-40. doi: 10.1016/j.expneurol.2015.11.007. Epub 2015 Dec 1.
10
The Impact of Midcervical Contusion Injury on Diaphragm Muscle Function.
J Neurotrauma. 2016 Mar 1;33(5):500-9. doi: 10.1089/neu.2015.4054. Epub 2015 Nov 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验