Suppr超能文献

颈脊髓半切后,对较小的膈神经运动神经元的兴奋性传入的不成比例丧失。

Disproportionate loss of excitatory inputs to smaller phrenic motor neurons following cervical spinal hemisection.

机构信息

Departments of Physiology & Biomedical Engineering and.

Anaesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN.

出版信息

J Physiol. 2020 Oct;598(20):4693-4711. doi: 10.1113/JP280130. Epub 2020 Aug 19.

Abstract

KEY POINTS

Motor units, comprising a motor neuron and the muscle fibre it innervates, are activated in an orderly fashion to provide varying amounts of force. A unilateral C2 spinal hemisection (C2SH) disrupts predominant excitatory input from medulla, causing cessation of inspiratory-related diaphragm muscle activity, whereas higher force, non-ventilatory diaphragm activity persists. In this study, we show a disproportionately larger loss of excitatory glutamatergic innervation to small phrenic motor neurons (PhMNs) following C2SH, as compared with large PhMNs ipsilateral to injury. Our data suggest that there is a dichotomy in the distribution of inspiratory-related descending excitatory glutamatergic input to small vs. large PhMNs that reflects their differential recruitment.

ABSTRACT

Excitatory glutamatergic input mediating inspiratory drive to phrenic motor neurons (PhMNs) emanates primarily from the ipsilateral ventrolateral medulla. Unilateral C2 hemisection (C2SH) disrupts this excitatory input, resulting in cessation of inspiratory-related diaphragm muscle (DIAm) activity. In contrast, after C2SH, higher force, non-ventilatory DIAm activity persists. Inspiratory behaviours require recruitment of only smaller PhMNs, whereas with more forceful expulsive/straining behaviours, larger PhMNs are recruited. Accordingly, we hypothesize that C2SH primarily disrupts glutamatergic synaptic inputs to smaller PhMNs, whereas glutamatergic synaptic inputs to larger PhMNs are preserved. We examined changes in glutamatergic presynaptic input onto retrogradely labelled PhMNs using immunohistochemistry for VGLUT1 and VGLUT2. We found that 7 days after C2SH there was an ∼60% reduction in glutamatergic inputs to smaller PhMNs compared with an ∼35% reduction at larger PhMNs. These results are consistent with a more pronounced impact of C2SH on inspiratory behaviours of the DIAm, and the preservation of higher force behaviours after C2SH. These results indicate that the source of glutamatergic synaptic input to PhMNs varies depending on motor neuron size and reflects different functional control - perhaps separate central pattern generator and premotor circuits. For smaller PhMNs, the central pattern generator for inspiration is located in the pre-Bötzinger complex and premotor neurons in the ventrolateral medulla, sending predominantly ipsilateral projections via the dorsolateral funiculus. C2SH disrupts this glutamatergic input. For larger PhMNs, a large proportion of excitatory inputs appear to exist below the C2 level or from contralateral regions of the brainstem and spinal cord.

摘要

关键点

运动单位由一个运动神经元及其支配的肌纤维组成,它们以有序的方式被激活,以提供不同的力量。单侧 C2 脊髓半切(C2SH)破坏了来自延髓的主要兴奋性传入,导致与吸气相关的膈肌无力活动停止,而更高强度的非通气膈肌无力活动持续存在。在这项研究中,我们发现与损伤侧的大膈神经运动神经元(PhMNs)相比,C2SH 后小 PhMNs 接受的兴奋性谷氨酸能传入明显减少。我们的数据表明,与吸气相关的下行兴奋性谷氨酸能传入到小 PhMNs 和大 PhMNs 的分布存在二分法,这反映了它们的差异募集。

摘要

介导膈神经运动神经元(PhMNs)吸气驱动的兴奋性谷氨酸能传入主要来自同侧腹外侧延髓。单侧 C2 半切(C2SH)破坏了这种兴奋性传入,导致与吸气相关的膈肌(DIAm)活动停止。相比之下,C2SH 后,更高强度的非通气 DIAm 活动持续存在。吸气行为只需要募集较小的 PhMNs,而在更有力的呼气/紧张行为中,较大的 PhMNs 被募集。因此,我们假设 C2SH 主要破坏较小 PhMNs 的谷氨酸能突触传入,而较大 PhMNs 的谷氨酸能突触传入则被保留。我们使用 VGLUT1 和 VGLUT2 的免疫组织化学方法检查了逆行标记的 PhMNs 上谷氨酸能突触前输入的变化。我们发现,与 C2SH 后较大 PhMNs 相比,C2SH 后 7 天,较小 PhMNs 的谷氨酸能传入减少了约 60%,而减少了约 35%。这些结果与 C2SH 对 DIAm 吸气行为的更明显影响以及 C2SH 后更高强度行为的保留一致。这些结果表明,PhMNs 的谷氨酸能突触传入的来源取决于运动神经元的大小,并反映了不同的功能控制-也许是单独的中枢模式发生器和运动前回路。对于较小的 PhMNs,吸气的中枢模式发生器位于 Pre-Bötzinger 复合体中,运动前神经元位于腹外侧延髓中,通过背外侧束主要发出同侧投射。C2SH 破坏了这种谷氨酸能传入。对于较大的 PhMNs,兴奋性传入的很大一部分似乎存在于 C2 以下水平或来自脑干和脊髓的对侧区域。

相似文献

3
Glutamatergic input varies with phrenic motor neuron size.谷氨酸能传入随膈神经运动神经元的大小而变化。
J Neurophysiol. 2019 Oct 1;122(4):1518-1529. doi: 10.1152/jn.00430.2019. Epub 2019 Aug 7.
6
Size-dependent differences in mitochondrial volume density in phrenic motor neurons.膈肌运动神经元中线粒体体积密度的尺寸依赖性差异。
J Appl Physiol (1985). 2023 Jun 1;134(6):1332-1340. doi: 10.1152/japplphysiol.00021.2023. Epub 2023 Apr 6.

引用本文的文献

2
Diaphragm Muscle: A Pump That Can Not Fail.膈肌:一个不会失灵的泵。
Physiol Rev. 2025 Jul 11. doi: 10.1152/physrev.00043.2024.
3
An update on spinal cord injury and diaphragm neuromotor control.脊髓损伤与膈肌神经运动控制的最新进展
Expert Rev Respir Med. 2025 Jul;19(7):679-695. doi: 10.1080/17476348.2025.2495165. Epub 2025 Apr 22.
6
Sex differences in spontaneous respiratory recovery following chronic C2 hemisection.慢性C2半横断后自发性呼吸恢复的性别差异。
J Appl Physiol (1985). 2024 Jul 1;137(1):166-180. doi: 10.1152/japplphysiol.00040.2024. Epub 2024 Jun 13.
9
Size-dependent differences in mitochondrial volume density in phrenic motor neurons.膈肌运动神经元中线粒体体积密度的尺寸依赖性差异。
J Appl Physiol (1985). 2023 Jun 1;134(6):1332-1340. doi: 10.1152/japplphysiol.00021.2023. Epub 2023 Apr 6.

本文引用的文献

1
Targeted activation of spinal respiratory neural circuits.靶向激活脊髓呼吸神经网络。
Exp Neurol. 2020 Jun;328:113256. doi: 10.1016/j.expneurol.2020.113256. Epub 2020 Feb 19.
4
Glutamatergic input varies with phrenic motor neuron size.谷氨酸能传入随膈神经运动神经元的大小而变化。
J Neurophysiol. 2019 Oct 1;122(4):1518-1529. doi: 10.1152/jn.00430.2019. Epub 2019 Aug 7.
6
Diaphragm muscle function following midcervical contusion injury in rats.大鼠颈中部挫伤后膈肌功能变化。
J Appl Physiol (1985). 2019 Jan 1;126(1):221-230. doi: 10.1152/japplphysiol.00481.2018. Epub 2018 Sep 20.
9
Phrenic motor neuron loss in aged rats.老年大鼠膈运动神经元的丧失
J Neurophysiol. 2018 May 1;119(5):1852-1862. doi: 10.1152/jn.00868.2017. Epub 2018 Feb 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验