Martinelli Vittoria, Fiore Davide, Salzano Davide, di Bernardo Mario
Department of Mathematics and Applications, 'R. Caccioppoli' University of Naples Federico II Via Cintia Monte S.Angelo, Naples 80126, Italy.
SSM- School for Advanced Studies Via Mezzocannone 4, Naples 80138, Italy.
J R Soc Interface. 2025 Jan;22(222):20240583. doi: 10.1098/rsif.2024.0583. Epub 2025 Jan 29.
This article presents the first implementation of a proportional-integral-derivative (PID) biomolecular controller within a consortium of different cell populations, aimed at robust regulation of biological processes. By leveraging the modularity and cooperative dynamics of multiple engineered cell populations, we develop a comprehensive analysis of the performance and robustness of P, PD, PI and PID control architectures. Our theoretical findings, validated through experiments using the BSim agent-based simulation platform for bacterial populations, demonstrate the robustness and effectiveness of our multicellular PID control strategy. This innovative approach addresses critical limitations in current control methods, offering significant potential for applications in metabolic engineering, therapeutic contexts and industrial biotechnology. Future work will focus on experimental validation and further refinement of the control models.
本文介绍了比例积分微分(PID)生物分子控制器在不同细胞群体联合体中的首次实现,旨在对生物过程进行稳健调节。通过利用多个工程细胞群体的模块化和协同动力学,我们对P、PD、PI和PID控制架构的性能和稳健性进行了全面分析。我们的理论发现通过使用基于BSim代理的细菌群体模拟平台进行的实验得到验证,证明了我们的多细胞PID控制策略的稳健性和有效性。这种创新方法解决了当前控制方法中的关键局限性,在代谢工程、治疗领域和工业生物技术应用方面具有巨大潜力。未来的工作将集中在控制模型的实验验证和进一步优化上。