School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China; Institute of Functional Materials and Agricultural Applied Chemistry, Jiangxi Agricultural University, Nanchang, 330045, China.
Institute of Functional Materials and Agricultural Applied Chemistry, Jiangxi Agricultural University, Nanchang, 330045, China.
Biosens Bioelectron. 2019 Dec 1;145:111716. doi: 10.1016/j.bios.2019.111716. Epub 2019 Sep 20.
The environmental stability, water-processibility and life-span of black phosphorene (BP) severely limit the application of its electronic devices in aqueous system containing oxygen. We reported the controllable preparation of in-situ reduction and deposition of silver nanoparticles on the BP surface and its amino-functionalized multi-walled carbon nanotubes (NH-MWCNT) nanocomposite. With the addition of both NH-MWCNT and Ag, the BP-based nanocomposite was prepared by ultrasonic-assisted liquid-phase exfoliation and was dispersed in carboxymethyl cellulose sodium (CMC) aqueous solution. The morphology, microstructure, and electrochemical properties of the nanohybrid were characterized. NH-MWCNT-BP-AgNPs showed high environmental stability, good water-processibility, satisfactory life-spans, superior electrocatalytic capacity with enzyme-like kinetic characteristics. The nanohybrid was applied as electrochemical sensors for single/simultaneous analysis of uric acid (UA), xanthine (XT) and hypoxanthine (HX). Excellent voltammetric responses for simultaneous determination in linear ranges of 0.1-800 μM with a limit of detection (LOD) of 0.052 μM for UA, 0.5-680 μM with a LOD of 0.021 μM for XT, and 0.7-320 μM with a LOD of 0.025 μM for HX under optimal conditions. Besides, the developed nanozyme sensor was employed for simultaneous voltammetric analysis of UA, XT and HX in real samples with acceptable recoveries. This work will provide theoretical guidance and experimental support for the preparation and application of two-dimensional materials, nanozymes and sensing devices.
黑磷烯(BP)的环境稳定性、水分加工性和使用寿命严重限制了其在含有氧气的水系中电子器件的应用。我们报道了在 BP 表面可控制备原位还原和沉积银纳米粒子及其氨基功能化多壁碳纳米管(NH-MWCNT)纳米复合材料。通过超声辅助液相剥离法,在添加 NH-MWCNT 和 Ag 的情况下,制备了基于 BP 的纳米复合材料,并将其分散在羧甲基纤维素钠(CMC)水溶液中。对纳米杂化物的形貌、微观结构和电化学性能进行了表征。NH-MWCNT-BP-AgNPs 表现出高环境稳定性、良好的水分加工性、令人满意的使用寿命、具有酶样动力学特性的卓越电催化能力。该纳米杂化物被用作电化学传感器,用于尿酸(UA)、黄嘌呤(XT)和次黄嘌呤(HX)的单一/同时分析。在最佳条件下,对同时测定的线性范围为 0.1-800μM,UA 的检测限(LOD)为 0.052μM,XT 的检测限(LOD)为 0.5-680μM,HX 的检测限(LOD)为 0.025μM,具有优异的伏安响应。此外,所开发的纳米酶传感器用于实际样品中 UA、XT 和 HX 的同时伏安分析,回收率可接受。这项工作将为二维材料、纳米酶和传感器件的制备和应用提供理论指导和实验支持。