Suppr超能文献

磁性 FeO 纳米粒子修饰的磷掺杂生物炭-凹凸棒土/铋膜电极用于智能手机操作的超痕量多种重金属离子的无线便携式传感。

Magnetic FeO nanoparticles decorated phosphorus-doped biochar-attapulgite/bismuth film electrode for smartphone-operated wireless portable sensing of ultra-trace multiple heavy metal ions.

机构信息

College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Nanchang, 330045, People's Republic of China.

Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.

出版信息

Mikrochim Acta. 2023 Feb 18;190(3):94. doi: 10.1007/s00604-023-05672-8.

Abstract

Pollution caused by both forestry wastes and heavy metals has increasingly drawn attention owing to environmental safety concerns. After essential oil is extracted from Cinnamomum camphoras (L.), the branches are used as forestry wastes to prepare a phosphorus-doped biochar-attapulgite/bismuth film electrode decorated with magnetic FeO nanoparticles (MBA-BiFE). The smartphone-operated wireless portable sensor is employed for the simultaneous ultratrace voltammetric detection of multiple heavy metal ions (Cd, Pb, and Hg). Cd, Pb, and Hg exhibit excellent electrochemical responses in linear ranges of 0.1 nM-5 μM, 0.01 nM-7 μM, and 0.1 nM-3 μM with limits of detection equal to 0.036, 0.003, and 0.011 nM, respectively. The recoveries of MBA-BiFE for Cd, Pb, and Hg are 93.6-109.9%, 86.0-107.5%, and 94.8-104.6%, respectively, and the RSD values for repeated measurements of Cd, Pb, and Hg are 4.2%, 2.8%, and 3.3%, respectively. A machine learning model based on an artificial neural network algorithm is constructed to enable a smart determination of ultratrace hazardous multiple metal ions. The portable sensor based on the screen-printed integrated three-electrode sensor modified using MBA-BiFE demonstrates advantages and practicability in outdoor detection, compared with conventional sensors based on MBA-BiFE. This study provides a smartphone-operated wireless portable sensing technique for high-potential applications in environmetallomics or agrometallomics using forestry waste-derived biochar as substrate for electrode preparation. HIGHLIGHTS: • FeO decorated phosphorus-doped biochar-attapulgite/bismuth film electrode. • A smartphone-operated sensor for analysis of multiple heavy metal ions. • An Artificial neural network model for smart analysis of Cd, Pb, and Hg.

摘要

由于对环境安全的关注,林业废物和重金属造成的污染日益受到关注。从樟科(L.)提取精油后,将树枝用作林业废物,制备磷掺杂生物炭凹凸棒石/铋薄膜电极,并用磁性 FeO 纳米粒子(MBA-BiFE)修饰。采用智能手机操作的无线便携式传感器,同时对多种重金属离子(Cd、Pb 和 Hg)进行超痕量伏安检测。Cd、Pb 和 Hg 在 0.1 nM-5 μM、0.01 nM-7 μM 和 0.1 nM-3 μM 的线性范围内表现出优异的电化学响应,检测限分别为 0.036、0.003 和 0.011 nM。MBA-BiFE 对 Cd、Pb 和 Hg 的回收率分别为 93.6-109.9%、86.0-107.5%和 94.8-104.6%,Cd、Pb 和 Hg 的重复测量 RSD 值分别为 4.2%、2.8%和 3.3%。构建了基于人工神经网络算法的机器学习模型,实现了对超痕量危险多种金属离子的智能测定。与基于 MBA-BiFE 的传统传感器相比,基于 MBA-BiFE 修饰的丝网印刷集成三电极传感器的便携式传感器在户外检测中具有优势和实用性。本研究为使用林业废物衍生的生物炭作为电极制备基底的环境金属组学或农业金属组学中的高潜力应用提供了一种智能手机操作的无线便携式传感技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验