Suppr超能文献

氧化还原活性金属有机骨架中的碘吸附:主体-客体电荷转移引起的电导率。

Iodine Adsorption in a Redox-Active Metal-Organic Framework: Electrical Conductivity Induced by Host-Guest Charge-Transfer.

机构信息

School of Chemistry , University of Manchester , Manchester M13 9PL , U.K.

ISIS Facility , STFC Rutherford Appleton Laboratory , Chilton , Oxfordshire OX11 0QX , U.K.

出版信息

Inorg Chem. 2019 Oct 21;58(20):14145-14150. doi: 10.1021/acs.inorgchem.9b02176. Epub 2019 Sep 30.

Abstract

We report a comparative study of the binding of I (iodine) in a pair of redox-active metal-organic framework (MOF) materials, MFM-300(V) and its oxidized, deprotonated analogue, MFM-300(V). Adsorption of I in MFM-300(V) triggers a host-to-guest charge-transfer, accompanied by a partial (∼30%) oxidation of the V centers in the host framework and formation of I species residing in the MOF channels. Importantly, this charge-transfer induces a significant enhancement in the electrical conductivity (Δ = 700000) of I@MFM-300(V) in comparison to MFM-300(V). In contrast, no host-guest charge-transfer or apparent change in the conductivity was observed upon adsorption of I in MFM-300(V). High-resolution synchrotron X-ray diffraction of I@MFM-300(V) confirms the first example of self-aggregation of adsorbed iodine species (I and I) into infinite helical chains within a MOF.

摘要

我们报告了一对氧化还原活性金属-有机骨架(MOF)材料 MFM-300(V)及其氧化、去质子化类似物 MFM-300(V)中碘(I)结合的比较研究。在 MFM-300(V)中吸附 I 会引发主体到客体的电荷转移,同时主体框架中的 V 中心部分(约 30%)被氧化,并形成位于 MOF 通道中的 I 物种。重要的是,与 MFM-300(V)相比,I@MFM-300(V)的电导率(Δ=700000)显著增强,这是由电荷转移引起的。相比之下,在 MFM-300(V)中吸附 I 时,没有观察到主体-客体电荷转移或电导率的明显变化。I@MFM-300(V)的高分辨率同步加速器 X 射线衍射证实了吸附碘物种(I 和 I)在 MOF 内自组装成无限螺旋链的首例。

相似文献

1
Iodine Adsorption in a Redox-Active Metal-Organic Framework: Electrical Conductivity Induced by Host-Guest Charge-Transfer.
Inorg Chem. 2019 Oct 21;58(20):14145-14150. doi: 10.1021/acs.inorgchem.9b02176. Epub 2019 Sep 30.
2
High Ammonia Adsorption in MFM-300 Materials: Dynamics and Charge Transfer in Host-Guest Binding.
J Am Chem Soc. 2021 Mar 3;143(8):3153-3161. doi: 10.1021/jacs.0c11930. Epub 2021 Feb 19.
3
Adsorption of Nitrogen Dioxide in a Redox-Active Vanadium Metal-Organic Framework Material.
J Am Chem Soc. 2020 Sep 9;142(36):15235-15239. doi: 10.1021/jacs.0c06414. Epub 2020 Aug 31.
4
Direct observation of supramolecular binding of light hydrocarbons in vanadium(iii) and (iv) metal-organic framework materials.
Chem Sci. 2018 Feb 21;9(13):3401-3408. doi: 10.1039/c8sc00330k. eCollection 2018 Apr 7.
5
A Host-Guest Electron Transfer Mechanism for Magnetic and Electronic Modifications in a Redox-Active Metal-Organic Framework.
Angew Chem Int Ed Engl. 2022 Apr 25;61(18):e202115976. doi: 10.1002/anie.202115976. Epub 2022 Mar 2.
6
Confinement of Iodine Molecules into Triple-Helical Chains within Robust Metal-Organic Frameworks.
J Am Chem Soc. 2017 Nov 15;139(45):16289-16296. doi: 10.1021/jacs.7b08748. Epub 2017 Nov 3.
7
Reversible MOF-Based Sensors for the Electrical Detection of Iodine Gas.
ACS Appl Mater Interfaces. 2019 Aug 7;11(31):27982-27988. doi: 10.1021/acsami.9b09938. Epub 2019 Jul 29.
8
Increased Electric Conductivity upon I Uptake and Gas Sorption in a Pillar-Layered Metal-Organic Framework.
Chempluschem. 2017 May;82(5):716-720. doi: 10.1002/cplu.201700063. Epub 2017 Apr 12.
10
Impact of Host-Guest Interactions on the Dielectric Properties of MFM-300 Materials.
Inorg Chem. 2023 Oct 23;62(42):17157-17162. doi: 10.1021/acs.inorgchem.3c02110. Epub 2023 Oct 9.

引用本文的文献

2
Electron beam and thermal stabilities of MFM-300(M) metal-organic frameworks.
J Mater Chem A Mater. 2024 Jul 1;12(36):24165-24174. doi: 10.1039/d4ta03302g. eCollection 2024 Sep 18.
4
Recent advances in the removal of radioactive iodine by bismuth-based materials.
Front Chem. 2023 Jan 24;11:1122484. doi: 10.3389/fchem.2023.1122484. eCollection 2023.
5
Enhanced Thermoelectric Properties of a Semiconducting Two-Dimensional Metal-Organic Framework via Iodine Loading.
ACS Appl Mater Interfaces. 2023 Feb 1;15(4):5478-5486. doi: 10.1021/acsami.2c20770. Epub 2023 Jan 23.
6
Synthesis of a Triazaisotruxene-Based Porous Organic Polymer and Its Application in Iodine Capture.
Molecules. 2022 Dec 9;27(24):8722. doi: 10.3390/molecules27248722.
7
Energy-Efficient Iodine Uptake by a Molecular Host⋅Guest Crystal.
Angew Chem Int Ed Engl. 2022 Dec 5;61(49):e202214039. doi: 10.1002/anie.202214039. Epub 2022 Oct 26.
8
Adsorption of iodine in metal-organic framework materials.
Chem Soc Rev. 2022 Apr 19;51(8):3243-3262. doi: 10.1039/d0cs01192d.
10
Electrically Conductive Metal-Organic Frameworks.
Chem Rev. 2020 Aug 26;120(16):8536-8580. doi: 10.1021/acs.chemrev.9b00766. Epub 2020 Apr 10.

本文引用的文献

1
Increased Electric Conductivity upon I Uptake and Gas Sorption in a Pillar-Layered Metal-Organic Framework.
Chempluschem. 2017 May;82(5):716-720. doi: 10.1002/cplu.201700063. Epub 2017 Apr 12.
2
Ultra-selective ligand-driven separation of strategic actinides.
Nat Commun. 2019 Jun 4;10(1):2438. doi: 10.1038/s41467-019-10240-x.
3
High electrical conductivity and high porosity in a Guest@MOF material: evidence of TCNQ ordering within CuBTC micropores.
Chem Sci. 2018 Aug 8;9(37):7405-7412. doi: 10.1039/c8sc02471e. eCollection 2018 Oct 7.
4
Radioactive iodine uptake in hyperthyroid cats after administration of recombinant human thyroid stimulating hormone.
J Vet Intern Med. 2018 Nov;32(6):1891-1896. doi: 10.1111/jvim.15295. Epub 2018 Oct 13.
5
Exceptional Iodine Capture in 2D Covalent Organic Frameworks.
Adv Mater. 2018 May 28:e1801991. doi: 10.1002/adma.201801991.
6
Template Assembly of Polyiodide Networks at Complexed Metal Cations: Synthesis and Structures of [Pd Cl ([18]aneN S )] I (I ) and [K([15]aneO ) ]I.
Angew Chem Int Ed Engl. 1998 Feb 16;37(3):293-296. doi: 10.1002/(SICI)1521-3773(19980216)37:3<293::AID-ANIE293>3.0.CO;2-5.
7
Confinement of Iodine Molecules into Triple-Helical Chains within Robust Metal-Organic Frameworks.
J Am Chem Soc. 2017 Nov 15;139(45):16289-16296. doi: 10.1021/jacs.7b08748. Epub 2017 Nov 3.
8
Direct Observation of Confined I ⋅⋅⋅I ⋅⋅⋅I Interactions in a Metal-Organic Framework: Iodine Capture and Sensing.
Chemistry. 2017 Jun 22;23(35):8409-8413. doi: 10.1002/chem.201702087. Epub 2017 May 30.
10
Exploiting redox activity in metal-organic frameworks: concepts, trends and perspectives.
Chem Commun (Camb). 2016 Jul 12;52(58):8957-71. doi: 10.1039/c6cc00805d.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验