Department of Chemical and Biomolecular Engineering, Electronics Design Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
Department of Biology, Skeletal Research Center &, Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, OH, 44106, USA.
Angew Chem Int Ed Engl. 2019 Nov 25;58(48):17399-17405. doi: 10.1002/anie.201910772. Epub 2019 Oct 17.
An accurate, rapid, and cost-effective biosensor for the quantification of disease biomarkers is vital for the development of early-diagnostic point-of-care systems. The recent discovery of the trans-cleavage property of CRISPR type V effectors makes CRISPR a potential high-accuracy bio-recognition tool. Herein, a CRISPR-Cas12a (cpf1) based electrochemical biosensor (E-CRISPR) is reported, which is more cost-effective and portable than optical-transduction-based biosensors. Through optimizing the in vitro trans-cleavage activity of Cas12a, E-CRIPSR was used to detect viral nucleic acids, including human papillomavirus 16 (HPV-16) and parvovirus B19 (PB-19), with a picomolar sensitivity. An aptamer-based E-CRISPR cascade was further designed for the detection of transforming growth factor β1 (TGF-β1) protein in clinical samples. As demonstrated, E-CRISPR could enable the development of portable, accurate, and cost-effective point-of-care diagnostic systems.
一种用于定量检测疾病生物标志物的精确、快速且具有成本效益的生物传感器对于开发即时检测的床边诊断系统至关重要。最近发现 CRISPR 型 V 效应物的转切割特性使得 CRISPR 成为一种潜在的高精度生物识别工具。本文报道了一种基于 CRISPR-Cas12a(cpf1)的电化学生物传感器(E-CRISPR),与基于光转导的生物传感器相比,它更具成本效益和便携性。通过优化 Cas12a 的体外转切割活性,E-CRIPSR 可用于检测病毒核酸,包括人乳头瘤病毒 16(HPV-16)和细小病毒 B19(PB-19),具有皮摩尔级的灵敏度。进一步设计了基于适体的 E-CRISPR 级联反应来检测临床样本中的转化生长因子 β1(TGF-β1)蛋白。结果表明,E-CRISPR 可以实现便携式、精确且具有成本效益的即时检测诊断系统的开发。