Suppr超能文献

组蛋白去乙酰化酶3通过神经干细胞和祖细胞调控围产期脑发育。

Histone Deacetylase 3 Governs Perinatal Cerebral Development via Neural Stem and Progenitor Cells.

作者信息

Li Lin, Jin Jianliang, Yang Xiang-Jiao

机构信息

The Rosalind & Morris Goodman Cancer Research Center, Montreal, QC H3A 1A3, Canada; Department of Medicine and McGill University, Montreal, QC H3A 1A3, Canada.

The Rosalind & Morris Goodman Cancer Research Center, Montreal, QC H3A 1A3, Canada; Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory of Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China.

出版信息

iScience. 2019 Oct 25;20:148-167. doi: 10.1016/j.isci.2019.09.015. Epub 2019 Sep 14.

Abstract

We report that cerebrum-specific inactivation of the histone deacetylase 3 (HDAC3) gene causes striking developmental defects in the neocortex, hippocampus, and corpus callosum; post-weaning lethality; and abnormal behaviors, including hyperactivity and anxiety. The defects are due to rapid loss of embryonic neural stem and progenitor cells (NSPCs). Premature neurogenesis and abnormal neuronal migration in the mutant brain alter NSPC homeostasis. Mutant cerebral cortices also display augmented DNA damage responses, apoptosis, and histone hyperacetylation. Moreover, mutant NSPCs are impaired in forming neurospheres in vitro, and treatment with the HDAC3-specific inhibitor RGFP966 abolishes neurosphere formation. Transcriptomic analyses of neonatal cerebral cortices and cultured neurospheres support that HDAC3 regulates transcriptional programs through interaction with different transcription factors, including NFIB. These findings establish HDAC3 as a major deacetylase critical for perinatal development of the mouse cerebrum and NSPCs, thereby suggesting a direct link of this enzymatic epigenetic regulator to human cerebral and intellectual development.

摘要

我们报告称,组蛋白脱乙酰酶3(HDAC3)基因在大脑中的特异性失活会导致新皮层、海马体和胼胝体出现显著的发育缺陷;断奶后致死;以及包括多动和焦虑在内的异常行为。这些缺陷是由于胚胎神经干细胞和祖细胞(NSPCs)的快速丢失所致。突变大脑中过早的神经发生和异常的神经元迁移改变了NSPC的稳态。突变的大脑皮层还表现出增强的DNA损伤反应、细胞凋亡和组蛋白高乙酰化。此外,突变的NSPCs在体外形成神经球的能力受损,用HDAC3特异性抑制剂RGFP966处理可消除神经球的形成。对新生大脑皮层和培养的神经球的转录组分析支持HDAC3通过与包括NFIB在内的不同转录因子相互作用来调节转录程序。这些发现确立了HDAC3作为一种对小鼠大脑和NSPC围产期发育至关重要的主要脱乙酰酶,从而表明这种酶促表观遗传调节因子与人类大脑和智力发育存在直接联系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e90d/6823663/6ebabd98d20d/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验