Suppr超能文献

无师自通的预测结构:决策策略和大脑路径。

Learning predictive structure without a teacher: decision strategies and brain routes.

机构信息

Department of Psychology, University of Cambridge, Cambridge, UK.

Department of Psychology, University of Cambridge, Cambridge, UK.

出版信息

Curr Opin Neurobiol. 2019 Oct;58:130-134. doi: 10.1016/j.conb.2019.09.014. Epub 2019 Sep 27.

Abstract

Extracting the structure of complex environments is at the core of our ability to interpret the present and predict the future. This skill is important for a range of behaviours from navigating a new city to learning music and language. Classical approaches that investigate our ability to extract the principles of organisation that govern complex environments focus on reward-based learning. Yet, the human brain is shown to be expert at learning generative structure based on mere exposure and without explicit reward. Individuals are shown to adapt to-unbeknownst to them-changes in the environment's temporal statistics and predict future events. Further, we present evidence for a common brain architecture for unsupervised structure learning and reward-based learning, suggesting that the brain is built on the premise that 'learning is its own reward' to support adaptive behaviour.

摘要

提取复杂环境的结构是我们解释现在和预测未来的核心能力。这种技能对于从导航新城市到学习音乐和语言等各种行为都很重要。研究我们从复杂环境中提取组织原则的能力的经典方法侧重于基于奖励的学习。然而,人类大脑被证明擅长基于单纯的暴露而无需明确奖励来学习生成结构。人们发现,个体能够适应环境的时间统计数据的未知变化,并预测未来事件。此外,我们还提供了证据,证明无监督结构学习和基于奖励的学习具有共同的大脑结构,这表明大脑是建立在“学习就是奖励”的前提下,以支持适应性行为。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验