Suppr超能文献

基于卷积神经网络的正电子发射断层扫描(PET)谱图修复,以减轻有缺陷的块探测器的影响。

CNN-based PET sinogram repair to mitigate defective block detectors.

机构信息

The University of Tennessee, Knoxville, TN, United States of America, 37996. Siemens Medical Solutions USA Inc., Knoxville, TN, United States of America, 37932. Author to whom any correspondence should be addressed.

出版信息

Phys Med Biol. 2019 Dec 5;64(23):235017. doi: 10.1088/1361-6560/ab4919.

Abstract

Positron emission tomography (PET) scanners continue to increase sensitivity and axial coverage by adding an ever expanding array of block detectors. As they age, one or more block detectors may lose sensitivity due to a malfunction or component failure. The sinogram data missing as a result thereof can lead to artifacts and other image degradations. We propose to mitigate the effects of malfunctioning block detectors by carrying out sinogram repair using a deep convolutional neural network. Experiments using whole-body patient studies with varying amounts of raw data removed are used to show that the neural network significantly outperforms previously published methods with respect to normalized mean squared error for raw sinograms, a multi-scale structural similarity measure for reconstructed images and with regard to quantitative accuracy.

摘要

正电子发射断层扫描(PET)扫描仪通过不断增加越来越多的块探测器来提高灵敏度和轴向覆盖范围。随着它们的老化,一个或多个块探测器可能会因故障或组件故障而失去灵敏度。由此导致的正弦图数据丢失会导致伪影和其他图像降级。我们建议通过使用深度卷积神经网络来进行正弦图修复,从而减轻故障块探测器的影响。使用具有不同数量原始数据删除的全身患者研究进行实验,以表明该神经网络在原始正弦图的归一化均方误差、重建图像的多尺度结构相似性度量以及定量准确性方面,显著优于以前发布的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验