Suppr超能文献

基于深度学习的心 SPECT 稀疏投影双域能谱合成。

DuDoSS: Deep-learning-based dual-domain sinogram synthesis from sparsely sampled projections of cardiac SPECT.

机构信息

Department, of Biomedical Engineering, Yale University, New Haven, Connecticut, USA.

Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA.

出版信息

Med Phys. 2023 Jan;50(1):89-103. doi: 10.1002/mp.15958. Epub 2022 Sep 28.

Abstract

PURPOSE

Myocardial perfusion imaging (MPI) using single-photon emission-computed tomography (SPECT) is widely applied for the diagnosis of cardiovascular diseases. In clinical practice, the long scanning procedures and acquisition time might induce patient anxiety and discomfort, motion artifacts, and misalignments between SPECT and computed tomography (CT). Reducing the number of projection angles provides a solution that results in a shorter scanning time. However, fewer projection angles might cause lower reconstruction accuracy, higher noise level, and reconstruction artifacts due to reduced angular sampling. We developed a deep-learning-based approach for high-quality SPECT image reconstruction using sparsely sampled projections.

METHODS

We proposed a novel deep-learning-based dual-domain sinogram synthesis (DuDoSS) method to recover full-view projections from sparsely sampled projections of cardiac SPECT. DuDoSS utilized the SPECT images predicted in the image domain as guidance to generate synthetic full-view projections in the sinogram domain. The synthetic projections were then reconstructed into non-attenuation-corrected and attenuation-corrected (AC) SPECT images for voxel-wise and segment-wise quantitative evaluations in terms of normalized mean square error (NMSE) and absolute percent error (APE). Previous deep-learning-based approaches, including direct sinogram generation (Direct Sino2Sino) and direct image prediction (Direct Img2Img), were tested in this study for comparison. The dataset used in this study included a total of 500 anonymized clinical stress-state MPI studies acquired on a GE NM/CT 850 scanner with 60 projection angles following the injection of Tc-tetrofosmin.

RESULTS

Our proposed DuDoSS generated more consistent synthetic projections and SPECT images with the ground truth than other approaches. The average voxel-wise NMSE between the synthetic projections by DuDoSS and the ground-truth full-view projections was 2.08% ± 0.81%, as compared to 2.21% ± 0.86% (p < 0.001) by Direct Sino2Sino. The averaged voxel-wise NMSE between the AC SPECT images by DuDoSS and the ground-truth AC SPECT images was 1.63% ± 0.72%, as compared to 1.84% ± 0.79% (p < 0.001) by Direct Sino2Sino and 1.90% ± 0.66% (p < 0.001) by Direct Img2Img. The averaged segment-wise APE between the AC SPECT images by DuDoSS and the ground-truth AC SPECT images was 3.87% ± 3.23%, as compared to 3.95% ± 3.21% (p = 0.023) by Direct Img2Img and 4.46% ± 3.58% (p < 0.001) by Direct Sino2Sino.

CONCLUSIONS

Our proposed DuDoSS is feasible to generate accurate synthetic full-view projections from sparsely sampled projections for cardiac SPECT. The synthetic projections and reconstructed SPECT images generated from DuDoSS are more consistent with the ground-truth full-view projections and SPECT images than other approaches. DuDoSS can potentially enable fast data acquisition of cardiac SPECT.

摘要

目的

单光子发射计算机断层扫描(SPECT)心肌灌注成像(MPI)广泛应用于心血管疾病的诊断。在临床实践中,长时间的扫描过程和采集时间可能会引起患者的焦虑和不适、运动伪影以及 SPECT 和计算机断层扫描(CT)之间的对位不准。减少投影角度的数量提供了一种可以缩短扫描时间的解决方案。然而,由于角度采样减少,较少的投影角度可能会导致重建精度降低、噪声水平增加以及重建伪影。我们开发了一种基于深度学习的方法,用于使用稀疏采样的投影进行高质量的 SPECT 图像重建。

方法

我们提出了一种新颖的基于深度学习的双域正弦图合成(DuDoSS)方法,用于从心脏 SPECT 的稀疏采样投影中恢复全视角投影。DuDoSS 利用图像域中预测的 SPECT 图像作为指导,在正弦图域中生成合成的全视角投影。然后,将合成的投影重建为非衰减校正和衰减校正(AC)SPECT 图像,以便在归一化均方误差(NMSE)和绝对百分比误差(APE)方面进行体素和分段的定量评估。本研究还测试了以前的基于深度学习的方法,包括直接正弦图生成(Direct Sino2Sino)和直接图像预测(Direct Img2Img),以进行比较。本研究使用的数据集共包括 500 例匿名临床应激状态 MPI 研究,这些研究是在注射 Tc-tetrofosmin 后使用 GE NM/CT 850 扫描仪以 60 个投影角度采集的。

结果

与其他方法相比,我们提出的 DuDoSS 生成的合成投影和 SPECT 图像与真实情况更为一致。DuDoSS 生成的合成投影与真实全视角投影的平均体素 NMSE 为 2.08%±0.81%,而 Direct Sino2Sino 为 2.21%±0.86%(p<0.001)。DuDoSS 生成的 AC SPECT 图像与真实 AC SPECT 图像的平均体素 NMSE 为 1.63%±0.72%,而 Direct Sino2Sino 为 1.84%±0.79%(p<0.001),Direct Img2Img 为 1.90%±0.66%(p<0.001)。DuDoSS 生成的 AC SPECT 图像与真实 AC SPECT 图像的平均分段 APE 为 3.87%±3.23%,而 Direct Img2Img 为 3.95%±3.21%(p=0.023),Direct Sino2Sino 为 4.46%±3.58%(p<0.001)。

结论

我们提出的 DuDoSS 能够从稀疏采样的投影中生成准确的心脏 SPECT 全视角投影。与其他方法相比,DuDoSS 生成的合成投影和重建的 SPECT 图像与真实全视角投影和 SPECT 图像更为一致。DuDoSS 有可能实现心脏 SPECT 的快速数据采集。

相似文献

引用本文的文献

2
AI in SPECT Imaging: Opportunities and Challenges.单光子发射计算机断层扫描成像中的人工智能:机遇与挑战。
Semin Nucl Med. 2025 May;55(3):294-312. doi: 10.1053/j.semnuclmed.2025.03.005. Epub 2025 Apr 3.
5
Unified Noise-aware Network for Low-count PET Denoising with Varying Count Levels.用于不同计数水平低计数PET去噪的统一噪声感知网络
IEEE Trans Radiat Plasma Med Sci. 2024 Apr;8(4):366-378. doi: 10.1109/trpms.2023.3334105. Epub 2023 Nov 20.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验