Department of Nuclear Medicine, University Hospital Regensburg, Regensburg, Germany.
Partner Site Regensburg, Bavarian Center for Cancer Research (BZKF), Regensburg, Germany.
Nuklearmedizin. 2023 Dec;62(6):334-342. doi: 10.1055/a-2198-0358. Epub 2023 Nov 23.
Positron emission tomography (PET) is vital for diagnosing diseases and monitoring treatments. Conventional image reconstruction (IR) techniques like filtered backprojection and iterative algorithms are powerful but face limitations. PET IR can be seen as an image-to-image translation. Artificial intelligence (AI) and deep learning (DL) using multilayer neural networks enable a new approach to this computer vision task. This review aims to provide mutual understanding for nuclear medicine professionals and AI researchers. We outline fundamentals of PET imaging as well as state-of-the-art in AI-based PET IR with its typical algorithms and DL architectures. Advances improve resolution and contrast recovery, reduce noise, and remove artifacts via inferred attenuation and scatter correction, sinogram inpainting, denoising, and super-resolution refinement. Kernel-priors support list-mode reconstruction, motion correction, and parametric imaging. Hybrid approaches combine AI with conventional IR. Challenges of AI-assisted PET IR include availability of training data, cross-scanner compatibility, and the risk of hallucinated lesions. The need for rigorous evaluations, including quantitative phantom validation and visual comparison of diagnostic accuracy against conventional IR, is highlighted along with regulatory issues. First approved AI-based applications are clinically available, and its impact is foreseeable. Emerging trends, such as the integration of multimodal imaging and the use of data from previous imaging visits, highlight future potentials. Continued collaborative research promises significant improvements in image quality, quantitative accuracy, and diagnostic performance, ultimately leading to the integration of AI-based IR into routine PET imaging protocols.
正电子发射断层扫描(PET)对疾病诊断和治疗监测至关重要。传统的图像重建(IR)技术,如滤波反投影和迭代算法,虽然功能强大,但也存在局限性。PETIR 可以被视为图像到图像的转换。基于人工智能(AI)和深度神经网络的技术为这一计算机视觉任务提供了新的方法。本综述旨在为核医学专业人员和 AI 研究人员提供相互理解。我们概述了 PET 成像的基本原理以及基于 AI 的 PETIR 的最新技术,包括其典型算法和深度学习架构。这些进展通过推断的衰减和散射校正、谱线内插、去噪和超分辨率细化来提高分辨率和对比度恢复,减少噪声和伪影。核先验支持列表模式重建、运动校正和参数成像。混合方法将 AI 与传统 IR 相结合。AI 辅助 PETIR 面临的挑战包括训练数据的可用性、跨扫描仪兼容性以及幻觉病变的风险。需要进行严格的评估,包括定量体模验证和与传统 IR 的诊断准确性进行视觉比较,以及监管问题。首批获得批准的基于 AI 的应用已经在临床上可用,其影响是可以预见的。新兴趋势,如多模态成像的整合以及利用之前的成像访问数据,突出了未来的潜力。持续的合作研究有望在图像质量、定量准确性和诊断性能方面取得重大进展,最终将基于 AI 的 IR 整合到常规 PET 成像协议中。