Departments of Biology and.
Psychology, University of Virginia, Charlottesville, Virginia 22904.
J Neurosci. 2019 Nov 20;39(47):9360-9368. doi: 10.1523/JNEUROSCI.1854-19.2019. Epub 2019 Sep 30.
Visual responses are extensively shaped by internal factors. This effect is drastic in the primary visual cortex (V1), where locomotion profoundly increases visually-evoked responses. Here we investigate whether a similar effect exists in another major visual structure, the superior colliculus (SC). By performing two-photon calcium imaging of head-fixed male and female mice running on a treadmill, we find that only a minority of neurons in the most superficial lamina of the SC display significant changes during locomotion. This modulation includes both increase and decrease in response amplitude and is similar between excitatory and inhibitory neurons. The overall change in the SC is small, whereas V1 responses almost double during locomotion. Additionally, SC neurons display lower response variability and less spontaneous activity than V1 neurons. Together, these experiments indicate that locomotion-dependent modulation is not a widespread phenomenon in the early visual system and that the SC and V1 use different strategies to encode visual information. Visual information captured by the retina is processed in parallel through two major pathways, one reaching the primary visual cortex through the thalamus, and the other projecting to the superior colliculus. The two pathways then merge in the higher areas of the visual cortex. Recent studies have shown that behavioral state such as locomotion is an essential component of vision and can strongly affect visual responses in the thalamocortical pathway. Here we demonstrate that neurons in the mouse superior colliculus and primary visual cortex display striking differences in their modulation by locomotion, as well as in response variability and spontaneous activity. Our results reveal an important "division of labor" in visual processing between these two evolutionarily distinct structures.
视觉反应受到内部因素的广泛影响。这种效应在初级视觉皮层(V1)中尤为明显,其中运动极大地增加了视觉诱发反应。在这里,我们研究了另一个主要的视觉结构——上丘(SC)中是否存在类似的效应。通过对在跑步机上跑动的雄性和雌性小鼠进行双光子钙成像,我们发现只有少数 SC 最浅层的神经元在运动过程中显示出显著的变化。这种调制包括反应幅度的增加和减少,并且在兴奋性和抑制性神经元之间相似。SC 的整体变化很小,而 V1 的反应在运动过程中几乎增加了一倍。此外,SC 神经元的反应变异性和自发性活动低于 V1 神经元。总的来说,这些实验表明,运动依赖性调制并不是早期视觉系统中的普遍现象,并且 SC 和 V1 采用不同的策略来编码视觉信息。由视网膜捕获的视觉信息通过两条主要途径并行处理,一条通过丘脑到达初级视觉皮层,另一条投射到上丘。然后这两条途径在视觉皮层的更高区域合并。最近的研究表明,行为状态(如运动)是视觉的一个重要组成部分,可以强烈影响丘脑皮质途径中的视觉反应。在这里,我们证明了小鼠上丘和初级视觉皮层中的神经元在运动调节、反应变异性和自发性活动方面存在显著差异。我们的研究结果揭示了这两个在进化上不同的结构在视觉处理中的重要“分工”。