Clinical Neuroscience Research Group, Department of Psychology, University of Oslo, Oslo, Norway.
NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
Hum Brain Mapp. 2020 Jan;41(1):241-255. doi: 10.1002/hbm.24802. Epub 2019 Oct 1.
Previous structural and functional neuroimaging studies have implicated distributed brain regions and networks in depression. However, there are no robust imaging biomarkers that are specific to depression, which may be due to clinical heterogeneity and neurobiological complexity. A dimensional approach and fusion of imaging modalities may yield a more coherent view of the neuronal correlates of depression. We used linked independent component analysis to fuse cortical macrostructure (thickness, area, gray matter density), white matter diffusion properties and resting-state functional magnetic resonance imaging default mode network amplitude in patients with a history of depression (n = 170) and controls (n = 71). We used univariate and machine learning approaches to assess the relationship between age, sex, case-control status, and symptom loads for depression and anxiety with the resulting brain components. Univariate analyses revealed strong associations between age and sex with mainly global but also regional specific brain components, with varying degrees of multimodal involvement. In contrast, there were no significant associations with case-control status, nor symptom loads for depression and anxiety with the brain components, nor any interaction effects with age and sex. Machine learning revealed low model performance for classifying patients from controls and predicting symptom loads for depression and anxiety, but high age prediction accuracy. Multimodal fusion of brain imaging data alone may not be sufficient for dissecting the clinical and neurobiological heterogeneity of depression. Precise clinical stratification and methods for brain phenotyping at the individual level based on large training samples may be needed to parse the neuroanatomy of depression.
先前的结构和功能神经影像学研究表明,抑郁症与分布于大脑的多个区域和网络有关。然而,目前尚无针对抑郁症的稳健影像学生物标志物,这可能是由于临床异质性和神经生物学的复杂性。采用多维方法并融合多种成像方式,可能会更全面地了解与抑郁症相关的神经元相关性。我们使用连接性独立成分分析融合了有抑郁病史的患者(n=170)和对照组(n=71)的皮质宏观结构(厚度、面积、灰质密度)、白质扩散特性和静息状态功能磁共振成像默认模式网络幅度。我们使用单变量和机器学习方法来评估年龄、性别、病例对照状态以及抑郁和焦虑的症状负荷与所得大脑成分之间的关系。单变量分析显示,年龄和性别与主要的全局大脑成分以及不同程度的多模态参与之间存在很强的关联。相比之下,与病例对照状态、抑郁和焦虑的症状负荷没有显著关联,与年龄和性别之间也没有交互作用。机器学习结果显示,对患者和对照进行分类以及预测抑郁和焦虑症状负荷的模型性能较低,但年龄预测的准确性较高。单独融合脑影像数据可能不足以解析抑郁症的临床和神经生物学异质性。可能需要基于大型训练样本的精确临床分层和个体水平的大脑表型方法来解析抑郁症的神经解剖结构。