Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
Am J Epidemiol. 2020 Mar 2;189(3):179-182. doi: 10.1093/aje/kwz199.
A society's social structure and the interactions of its members determine when key drivers of health occur, for how long they last, and how they operate. Yet, it has been unclear whether causal inference methods can help us find meaningful interventions on these fundamental social drivers of health. Galea and Hernán propose we place hypothetical interventions on a spectrum and estimate their effects by emulating trials, either through individual-level data analysis or systems science modeling (Am J Epidemiol. 2020;189(3):167-170). In this commentary, by way of example in health disparities research, we probe this "closer engagement of social epidemiology with formal causal inference approaches." The formidable, but not insurmountable, tensions call for causal reasoning and effect estimation in social epidemiology that should always be enveloped by a thorough understanding of how systems and the social exposome shape risk factor and health distributions. We argue that one way toward progress is a true partnership of social epidemiology and causal inference with bilateral feedback aimed at integrating social epidemiologic theory, causal identification and modeling methods, systems thinking, and improved study design and data. To produce consequential work, we must make social epidemiology more causal and causal inference more social.
一个社会的社会结构和其成员的相互作用决定了健康的关键驱动因素何时发生、持续多久以及如何运作。然而,因果推理方法是否能帮助我们找到对这些基本社会健康驱动因素的有意义的干预措施,还不清楚。Galea 和 Hernán 提出,我们可以将假设的干预措施放在一个连续体上,并通过模拟试验来估计它们的效果,要么通过个体水平数据分析,要么通过系统科学建模(Am J Epidemiol. 2020;189(3):167-170)。在这篇评论中,我们以健康差异研究为例,探讨了这种“社会流行病学与正式因果推理方法更紧密结合”的方法。这种方法存在巨大但并非无法克服的紧张关系,需要在社会流行病学中进行因果推理和效果估计,同时始终要充分了解系统和社会暴露组如何塑造风险因素和健康分布。我们认为,一种前进的方法是社会流行病学和因果推理的真正伙伴关系,具有双向反馈,旨在整合社会流行病学理论、因果识别和建模方法、系统思维以及改进的研究设计和数据。为了产生有意义的工作,我们必须使社会流行病学更具因果关系,使因果推理更具社会性。