Suppr超能文献

邀请评论:使因果推断更具社会性,使(社会)流行病学更具因果性。

Invited Commentary: Making Causal Inference More Social and (Social) Epidemiology More Causal.

机构信息

Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.

Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.

出版信息

Am J Epidemiol. 2020 Mar 2;189(3):179-182. doi: 10.1093/aje/kwz199.

Abstract

A society's social structure and the interactions of its members determine when key drivers of health occur, for how long they last, and how they operate. Yet, it has been unclear whether causal inference methods can help us find meaningful interventions on these fundamental social drivers of health. Galea and Hernán propose we place hypothetical interventions on a spectrum and estimate their effects by emulating trials, either through individual-level data analysis or systems science modeling (Am J Epidemiol. 2020;189(3):167-170). In this commentary, by way of example in health disparities research, we probe this "closer engagement of social epidemiology with formal causal inference approaches." The formidable, but not insurmountable, tensions call for causal reasoning and effect estimation in social epidemiology that should always be enveloped by a thorough understanding of how systems and the social exposome shape risk factor and health distributions. We argue that one way toward progress is a true partnership of social epidemiology and causal inference with bilateral feedback aimed at integrating social epidemiologic theory, causal identification and modeling methods, systems thinking, and improved study design and data. To produce consequential work, we must make social epidemiology more causal and causal inference more social.

摘要

一个社会的社会结构和其成员的相互作用决定了健康的关键驱动因素何时发生、持续多久以及如何运作。然而,因果推理方法是否能帮助我们找到对这些基本社会健康驱动因素的有意义的干预措施,还不清楚。Galea 和 Hernán 提出,我们可以将假设的干预措施放在一个连续体上,并通过模拟试验来估计它们的效果,要么通过个体水平数据分析,要么通过系统科学建模(Am J Epidemiol. 2020;189(3):167-170)。在这篇评论中,我们以健康差异研究为例,探讨了这种“社会流行病学与正式因果推理方法更紧密结合”的方法。这种方法存在巨大但并非无法克服的紧张关系,需要在社会流行病学中进行因果推理和效果估计,同时始终要充分了解系统和社会暴露组如何塑造风险因素和健康分布。我们认为,一种前进的方法是社会流行病学和因果推理的真正伙伴关系,具有双向反馈,旨在整合社会流行病学理论、因果识别和建模方法、系统思维以及改进的研究设计和数据。为了产生有意义的工作,我们必须使社会流行病学更具因果关系,使因果推理更具社会性。

相似文献

1
Invited Commentary: Making Causal Inference More Social and (Social) Epidemiology More Causal.
Am J Epidemiol. 2020 Mar 2;189(3):179-182. doi: 10.1093/aje/kwz199.
3
Invited Commentary: Counterfactuals in Social Epidemiology-Thinking Outside of "the Box".
Am J Epidemiol. 2020 Mar 2;189(3):175-178. doi: 10.1093/aje/kwz198.
4
Invited commentary: Agent-based models for causal inference—reweighting data and theory in epidemiology.
Am J Epidemiol. 2015 Jan 15;181(2):103-5. doi: 10.1093/aje/kwu272. Epub 2014 Dec 5.
5
Win-Win: Reconciling Social Epidemiology and Causal Inference.
Am J Epidemiol. 2020 Mar 2;189(3):167-170. doi: 10.1093/aje/kwz158.
6
Invited commentary: The virtual epidemiologist—promise and peril.
Am J Epidemiol. 2015 Jan 15;181(2):100-2. doi: 10.1093/aje/kwu270. Epub 2014 Dec 5.
8
Seeking causal explanations in social epidemiology.
Am J Epidemiol. 1999 Jul 15;150(2):113-20. doi: 10.1093/oxfordjournals.aje.a009969.
9
Strengthening Causal Inference in Exposomics Research: Application of Genetic Data and Methods.
Environ Health Perspect. 2022 May;130(5):55001. doi: 10.1289/EHP9098. Epub 2022 May 9.
10
Invited commentary: On the future of social epidemiology--a case for scientific realism.
Am J Epidemiol. 2013 Sep 15;178(6):852-7. doi: 10.1093/aje/kwt143. Epub 2013 Sep 5.

引用本文的文献

2
A Review of the Causal Decomposition Framework for Modeling Interventions that Reduce Disparities.
Curr Epidemiol Rep. 2025;12. doi: 10.1007/s40471-025-00361-x. Epub 2025 Jun 2.
3
Poverty and Childhood Obesity: Current Evidence and Methodologies for Future Research.
Curr Obes Rep. 2025 Apr 11;14(1):33. doi: 10.1007/s13679-025-00627-x.
4
The gap-closing estimand: A causal approach to study interventions that close disparities across social categories.
Sociol Methods Res. 2024 May;53(2):507-570. doi: 10.1177/00491241211055769. Epub 2022 Jan 13.
5
Reconceptualizing rurality: Exploring community capital to identify distinct rural classes in the United States.
SSM Popul Health. 2024 Dec 2;29:101729. doi: 10.1016/j.ssmph.2024.101729. eCollection 2025 Mar.
6
Selection Bias in Health Research: Quantifying, Eliminating, or Exacerbating Health Disparities?
Curr Epidemiol Rep. 2024 Mar;11(1):63-72. doi: 10.1007/s40471-023-00325-z. Epub 2023 Aug 30.
7
Co-occurring psychiatric disorders and disparities in buprenorphine utilization in opioid use disorder: An analysis of insurance claims.
Drug Alcohol Depend Rep. 2023 Oct 20;9:100195. doi: 10.1016/j.dadr.2023.100195. eCollection 2023 Dec.
9
Childhood socioeconomic position and cardiometabolic risk in young adulthood- the impact of mental health.
BMC Public Health. 2023 Jun 13;23(1):1136. doi: 10.1186/s12889-023-15942-y.
10
Invited Commentary: Conducting and Emulating Trials to Study Effects of Social Interventions.
Am J Epidemiol. 2022 Jul 23;191(8):1453-1456. doi: 10.1093/aje/kwac066.

本文引用的文献

1
Win-Win: Reconciling Social Epidemiology and Causal Inference.
Am J Epidemiol. 2020 Mar 2;189(3):167-170. doi: 10.1093/aje/kwz158.
2
Analyzing Selection Bias for Credible Causal Inference: When in Doubt, DAG It Out.
Epidemiology. 2019 Jul;30(4):517-520. doi: 10.1097/EDE.0000000000001033.
3
Intersectional decomposition analysis with differential exposure, effects, and construct.
Soc Sci Med. 2019 Apr;226:254-259. doi: 10.1016/j.socscimed.2019.01.033. Epub 2019 Jan 31.
5
Decomposition Analysis to Identify Intervention Targets for Reducing Disparities.
Epidemiology. 2018 Nov;29(6):825-835. doi: 10.1097/EDE.0000000000000901.
7
On the Interpretation of Path-specific Effects in Health Disparities Research.
Epidemiology. 2018 Jul;29(4):517-520. doi: 10.1097/EDE.0000000000000843.
10
A Comparison of Agent-Based Models and the Parametric G-Formula for Causal Inference.
Am J Epidemiol. 2017 Jul 15;186(2):131-142. doi: 10.1093/aje/kwx091.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验