Suppr超能文献

用于对减少差异的干预措施进行建模的因果分解框架综述。

A Review of the Causal Decomposition Framework for Modeling Interventions that Reduce Disparities.

作者信息

Qin Michelle M, Jackson John W

机构信息

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health.

Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health.

出版信息

Curr Epidemiol Rep. 2025;12. doi: 10.1007/s40471-025-00361-x. Epub 2025 Jun 2.

Abstract

PURPOSE OF REVIEW

This review summarizes recent developments in causal decomposition analysis (CDA), a modeling framework for reducing disparities. Rather than the current or past drivers of a disparity, CDA estimates the effect of an to change the distribution of a variable or set of variables that are distributed differently or have different effects between groups. Furthermore, CDA clarifies how, through covariate adjustment, ethics and justice are implicit in any definition of disparity and may be incorporated into an intervention.

RECENT FINDINGS

CDA has been applied to disparities in health, sociology, education, and computer science. The CDA framework consists of four steps: formulating a meaningful estimand, articulating identification assumptions to link an appropriate dataset with the estimand, choosing an appropriate estimator, and conducting statistical inference. Estimators have been developed for various types of data and to address particular statistical challenges. However, some estimators adjust for all available covariates in all parts of the model, without discussing ethical implications. Meanwhile, the literature has covered some but not all potential violations of standard CDA modeling assumptions.

SUMMARY

CDA builds on previous methods for studying disparities by articulating causal estimands that transparently reflect implicit value judgements about health disparities. This review outlines the broad framework of CDA methodology, selected implementations, practical considerations, and current limitations and alternatives.

摘要

综述目的

本综述总结了因果分解分析(CDA)这一用于减少差异的建模框架的最新进展。因果分解分析并非估计差异的当前或过去驱动因素,而是估计一个因素对改变变量或一组变量分布的影响,这些变量在不同群体之间分布不同或具有不同影响。此外,因果分解分析阐明了如何通过协变量调整,使伦理和正义隐含在差异的任何定义中,并可纳入干预措施。

最新发现

因果分解分析已应用于健康、社会学、教育和计算机科学等领域的差异研究。因果分解分析框架包括四个步骤:制定有意义的估计量、阐明识别假设以将适当的数据集与估计量联系起来、选择合适的估计器以及进行统计推断。针对各种类型的数据和特定的统计挑战,已经开发了估计器。然而,一些估计器在模型的所有部分对所有可用协变量进行调整,而未讨论伦理影响。同时,文献涵盖了标准因果分解分析建模假设的一些但并非所有潜在违反情况。

总结

因果分解分析建立在先前研究差异的方法基础上,通过阐明因果估计量,透明地反映关于健康差异的隐含价值判断。本综述概述了因果分解分析方法的广泛框架、选定的实施方式、实际考虑因素以及当前的局限性和替代方法。

相似文献

9
Algorithm-based pain management for people with dementia in nursing homes.基于算法的养老院痴呆患者疼痛管理。
Cochrane Database Syst Rev. 2022 Apr 1;4(4):CD013339. doi: 10.1002/14651858.CD013339.pub2.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验