Suppr超能文献

将基于证据的干预措施扩大规模的陷阱。

The pitfalls of scaling up evidence-based interventions in health.

机构信息

Health and Social Services Systems, Knowledge Translation and Implementation component of the Quebec SPOR-SUPPORT Unit, Université Laval , Quebec , QC , Canada.

Centre de recherche sur les soins et les services de première ligne - Université Laval (CERSSPL-UL), Université Laval , Quebec , QC , Canada.

出版信息

Glob Health Action. 2019;12(1):1670449. doi: 10.1080/16549716.2019.1670449.

Abstract

Policy-makers worldwide are increasingly interested in scaling up evidence-based interventions (EBIs) to larger populations, and implementation scientists are developing frameworks and methodologies for achieving this. But scaling-up does not always produce the desired results. Why not? We aimed to enhance awareness of the various pitfalls to be anticipated when planning scale-up. In lower- and middle-income countries (LMICs), the scale-up of health programs to prevent or respond to outbreaks of communicable diseases has been occurring for many decades. In high-income countries, there is new interest in the scaling up of interventions that address communicable and non-communicable diseases alike. We scanned the literature worldwide on problems encountered when implementing scale-up plans revealed a number of potential pitfalls that we discuss in this paper. We identified and discussed the following six major pitfalls of scaling-up EBIs: 1) the cost-effectiveness estimation pitfall, i.e. accurate cost-effectiveness estimates about real-world implementation are almost impossible, making predictions of economies of scale unreliable; 2) the health inequities pitfall, i.e. some people will necessarily be left out and therefore not benefit from the scaled-up EBIs; 3) the scaled-up harm pitfall, i.e. the harms as well as the benefits may be amplified by the scaling-up; 4) the ethical pitfall, i.e. informed consent may be a challenge on a grander scale; 5) the top-down pitfall, i.e. the needs, preferences and culture of end-users may be forgotten when scale-up is directed from above; and 6) the contextual pitfall, i.e. it may not be possible to adapt the EBIs to every context. If its pitfalls are addressed head on, scaling-up may be a powerful process for translating research data into practical improvements in healthcare in both LMICs and high-income countries, ensuring that more people benefit from EBIs.

摘要

政策制定者越来越有兴趣将基于证据的干预措施(EBIs)扩大到更大的人群,实施科学家正在为此制定框架和方法。但扩大规模并不总能产生预期的结果。为什么不呢?我们旨在提高对规划扩大规模时可能遇到的各种陷阱的认识。在中低收入国家(LMICs),几十年来一直在扩大预防或应对传染病爆发的卫生项目。在高收入国家,人们对解决传染病和非传染病的干预措施的扩大规模也产生了新的兴趣。我们在全球范围内扫描了有关实施扩大规模计划时遇到的问题的文献,发现了一些我们在本文中讨论的潜在陷阱。我们确定并讨论了扩大 EBI 的以下六个主要陷阱:1)成本效益估计陷阱,即关于实际实施的准确成本效益估计几乎是不可能的,使得对规模经济的预测不可靠;2)卫生不公平陷阱,即有些人必然会被遗漏,因此无法从扩大的 EBI 中受益;3)扩大危害陷阱,即危害以及效益可能因扩大而放大;4)伦理陷阱,即知情同意在更大规模上可能是一个挑战;5)自上而下的陷阱,即当规模扩大是由上级指导时,最终用户的需求、偏好和文化可能会被遗忘;6)背景陷阱,即可能无法将 EBI 适应每个背景。如果正面解决这些陷阱,扩大规模可能是将研究数据转化为中低收入国家和高收入国家医疗保健实际改进的有力过程,确保更多人受益于 EBI。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed67/6781190/4879d3e865b1/ZGHA_A_1670449_F0001_B.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验