Suppr超能文献

RayPlus 中的放射组学:一个用于医学图像纹理分析的基于 Web 的工具。

Radiomics in RayPlus: a Web-Based Tool for Texture Analysis in Medical Images.

机构信息

Department of Minimally Invasive Intervention, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China.

Ruijia Technology, Inc., Wuhan, China.

出版信息

J Digit Imaging. 2019 Apr;32(2):269-275. doi: 10.1007/s10278-018-0128-1.

Abstract

Radiomics has been shown to have considerable potential and value in quantifying the tumor phenotype and predicting the treatment response. In most scenarios, the commercial and open-source software programs are available for quantitative analysis in medical images to streamline radiomics research. However, at this stage, most of these programs are local applications and require users to have experience in programming and software engineering, which clinicians usually do not have. Therefore, in this article, a web-based tool was proposed to flexibly support radiomics research workflow tasks. Radiomics in RayPlus requires zero installation, is easy to maintain, and accessible anywhere via any PC or MAC with an Internet connection. The system provides functions including multimodality image import and viewing, ROI definition, feature extraction, and data sharing. As a web application, it appears an effective way to multi-institution and multi-department collaborative radiomics research and moreover, its transparency, flexibility, and portability can greatly accelerate the pace of clinical data analysis.

摘要

放射组学在定量肿瘤表型和预测治疗反应方面具有很大的潜力和价值。在大多数情况下,商业和开源软件程序可用于对医学图像进行定量分析,以简化放射组学研究。然而,在现阶段,这些程序大多是本地应用程序,需要用户具备编程和软件工程方面的经验,而临床医生通常并不具备这些经验。因此,本文提出了一种基于网络的工具,以灵活地支持放射组学研究工作流程任务。在 RayPlus 中的放射组学无需安装,易于维护,并且通过任何具有 Internet 连接的 PC 或 MAC 都可以在任何地方访问。该系统提供了多种功能,包括多模态图像导入和查看、ROI 定义、特征提取和数据共享。作为一种网络应用程序,它似乎是进行多机构和多部门协作放射组学研究的有效方法,而且,它的透明度、灵活性和可移植性可以大大加快临床数据分析的步伐。

相似文献

1
Radiomics in RayPlus: a Web-Based Tool for Texture Analysis in Medical Images.
J Digit Imaging. 2019 Apr;32(2):269-275. doi: 10.1007/s10278-018-0128-1.
3
Technical Note: Ontology-guided radiomics analysis workflow (O-RAW).
Med Phys. 2019 Dec;46(12):5677-5684. doi: 10.1002/mp.13844. Epub 2019 Oct 25.
4
RayPlus: a Web-Based Platform for Medical Image Processing.
J Digit Imaging. 2017 Apr;30(2):197-203. doi: 10.1007/s10278-016-9920-y.
5
Web-based interactive 2D/3D medical image processing and visualization software.
Comput Methods Programs Biomed. 2010 May;98(2):172-82. doi: 10.1016/j.cmpb.2009.11.012.
6
MITK Phenotyping: An open-source toolchain for image-based personalized medicine with radiomics.
Radiother Oncol. 2019 Feb;131:108-111. doi: 10.1016/j.radonc.2018.11.021. Epub 2018 Dec 31.
8
Technical Challenges in the Clinical Application of Radiomics.
JCO Clin Cancer Inform. 2017 Nov;1:1-8. doi: 10.1200/CCI.17.00004.
9
RaCaT: An open source and easy to use radiomics calculator tool.
PLoS One. 2019 Feb 20;14(2):e0212223. doi: 10.1371/journal.pone.0212223. eCollection 2019.
10
Radiomics: from qualitative to quantitative imaging.
Br J Radiol. 2020 Apr;93(1108):20190948. doi: 10.1259/bjr.20190948. Epub 2020 Feb 26.

引用本文的文献

1
Artificial intelligence-based MRI radiomics and radiogenomics in glioma.
Cancer Imaging. 2024 Mar 14;24(1):36. doi: 10.1186/s40644-024-00682-y.
3
Diffusion Tensor Imaging Radiomics for Diagnosis of Parkinson's Disease.
Brain Sci. 2022 Jun 29;12(7):851. doi: 10.3390/brainsci12070851.
4
EGFR Mutation Status and Subtypes Predicted by CT-Based 3D Radiomic Features in Lung Adenocarcinoma.
Onco Targets Ther. 2022 May 30;15:597-608. doi: 10.2147/OTT.S352619. eCollection 2022.
5
Radiomic analysis for predicting prognosis of colorectal cancer from preoperative F-FDG PET/CT.
J Transl Med. 2022 Feb 2;20(1):66. doi: 10.1186/s12967-022-03262-5.
6
7
Quantitative Prediction of Microsatellite Instability in Colorectal Cancer With Preoperative PET/CT-Based Radiomics.
Front Oncol. 2021 Jul 22;11:702055. doi: 10.3389/fonc.2021.702055. eCollection 2021.
8
Texture feature-based machine learning classifier could assist in the diagnosis of COVID-19.
Eur J Radiol. 2021 Apr;137:109602. doi: 10.1016/j.ejrad.2021.109602. Epub 2021 Feb 15.

本文引用的文献

1
RayPlus: a Web-Based Platform for Medical Image Processing.
J Digit Imaging. 2017 Apr;30(2):197-203. doi: 10.1007/s10278-016-9920-y.
2
Rectal Cancer: Assessment of Neoadjuvant Chemoradiation Outcome based on Radiomics of Multiparametric MRI.
Clin Cancer Res. 2016 Nov 1;22(21):5256-5264. doi: 10.1158/1078-0432.CCR-15-2997. Epub 2016 May 16.
4
Development and Validation of a Radiomics Nomogram for Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer.
J Clin Oncol. 2016 Jun 20;34(18):2157-64. doi: 10.1200/JCO.2015.65.9128. Epub 2016 May 2.
9
Radiomics: the process and the challenges.
Magn Reson Imaging. 2012 Nov;30(9):1234-48. doi: 10.1016/j.mri.2012.06.010. Epub 2012 Aug 13.
10
Promise and pitfalls of quantitative imaging in oncology clinical trials.
Magn Reson Imaging. 2012 Nov;30(9):1301-12. doi: 10.1016/j.mri.2012.06.009. Epub 2012 Aug 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验