Suppr超能文献

用于交互式图像分割系统的半自动可用性评估框架

A Semi-Automated Usability Evaluation Framework for Interactive Image Segmentation Systems.

作者信息

Amrehn Mario, Steidl Stefan, Kortekaas Reinier, Strumia Maddalena, Weingarten Markus, Kowarschik Markus, Maier Andreas

机构信息

The Pattern Recognition Lab, Computer Science Department, Friedrich-Alexander University Erlangen-Nuremberg, Germany.

Siemens Healthineers AG, Forchheim, Germany.

出版信息

Int J Biomed Imaging. 2019 Sep 5;2019:1464592. doi: 10.1155/2019/1464592. eCollection 2019.

Abstract

For complex segmentation tasks, the achievable accuracy of fully automated systems is inherently limited. Specifically, when a precise segmentation result is desired for a small amount of given data sets, semi-automatic methods exhibit a clear benefit for the user. The optimization of human computer interaction (HCI) is an essential part of interactive image segmentation. Nevertheless, publications introducing novel interactive segmentation systems (ISS) often lack an objective comparison of HCI aspects. It is demonstrated that even when the underlying segmentation algorithm is the same throughout interactive prototypes, their user experience may vary substantially. As a result, users prefer simple interfaces as well as a considerable degree of freedom to control each iterative step of the segmentation. In this article, an objective method for the comparison of ISS is proposed, based on extensive user studies. A summative qualitative content analysis is conducted via abstraction of visual and verbal feedback given by the participants. A direct assessment of the segmentation system is executed by the users via the system usability scale (SUS) and AttrakDiff-2 questionnaires. Furthermore, an approximation of the findings regarding usability aspects in those studies is introduced, conducted solely from the system-measurable user actions during their usage of interactive segmentation prototypes. The prediction of all questionnaire results has an average relative error of 8.9%, which is close to the expected precision of the questionnaire results themselves. This automated evaluation scheme may significantly reduce the resources necessary to investigate each variation of a prototype's user interface (UI) features and segmentation methodologies.

摘要

对于复杂的分割任务,全自动系统可达到的精度本质上是有限的。具体而言,当需要针对少量给定数据集获得精确的分割结果时,半自动方法对用户具有明显的优势。人机交互(HCI)的优化是交互式图像分割的重要组成部分。然而,介绍新型交互式分割系统(ISS)的出版物往往缺乏对HCI方面的客观比较。结果表明,即使在整个交互式原型中底层分割算法相同,其用户体验也可能有很大差异。因此,用户更喜欢简单的界面以及在控制分割的每个迭代步骤时有相当大的自由度。在本文中,基于广泛的用户研究,提出了一种用于比较ISS的客观方法。通过对参与者给出的视觉和语言反馈进行抽象,进行总结性定性内容分析。用户通过系统可用性量表(SUS)和AttrakDiff-2问卷对分割系统进行直接评估。此外,还介绍了仅根据用户在使用交互式分割原型期间系统可测量的用户操作得出的关于那些研究中可用性方面的发现的近似值。所有问卷结果的预测平均相对误差为8.9%,这接近问卷结果本身的预期精度。这种自动评估方案可以显著减少研究原型用户界面(UI)特征和分割方法的每个变体所需的资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/336f/6748179/30944454d544/IJBI2019-1464592.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验