Suppr超能文献

在由空气腔支撑的软膜上对复杂和非周期性形状进行深亚波长声图案化。

Deep, sub-wavelength acoustic patterning of complex and non-periodic shapes on soft membranes supported by air cavities.

机构信息

Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA.

Department of Bioengineering, University of California at Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA.

出版信息

Lab Chip. 2019 Nov 7;19(21):3714-3725. doi: 10.1039/c9lc00612e. Epub 2019 Oct 4.

Abstract

Arbitrary patterning of micro-objects in liquid is crucial to many biomedical applications. Among conventional methodologies, acoustic approaches provide superior biocompatibility but are intrinsically limited to producing periodic patterns at low resolution due to the nature of standing waves and the coupling between fluid and structure vibrations. This work demonstrates a near-field acoustic platform capable of synthesizing high resolution, complex and non-periodic energy potential wells. A thin and viscoelastic membrane is utilized to modulate the acoustic wavefront on a deep, sub-wavelength scale by suppressing the structural vibration selectively on the platform. Using 3 MHz excitation (λ∼ 500 μm in water), we have experimentally validated such a concept by realizing patterning of microparticles and cells with a line resolution of 50 μm (one tenth of the wavelength). Furthermore, massively parallel patterning across a 3 × 3 mm area has been achieved. This new acoustic wavefront modulation mechanism is powerful for manufacturing complex biologic products.

摘要

微物体在液体中的任意图案化对于许多生物医学应用至关重要。在传统方法中,声学方法提供了优异的生物相容性,但由于驻波的性质以及流体和结构振动之间的耦合,其本质上仅限于以低分辨率产生周期性图案。本工作展示了一种近场声学平台,能够合成高分辨率、复杂和非周期性的能量势阱。通过在平台上有选择地抑制结构振动,薄的粘弹性膜用于在深亚波长尺度上调制声波前。使用 3 MHz 的激励(在水中λ∼500 μm),我们通过实现具有 50 μm 的线分辨率(波长的十分之一)的微颗粒和细胞的图案化,实验验证了这一概念。此外,已经实现了跨越 3×3 mm 区域的大规模并行图案化。这种新的声波前调制机制对于制造复杂的生物产品非常有效。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验