Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA.
Department of Bioengineering, University of California at Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA.
Lab Chip. 2019 Nov 7;19(21):3714-3725. doi: 10.1039/c9lc00612e. Epub 2019 Oct 4.
Arbitrary patterning of micro-objects in liquid is crucial to many biomedical applications. Among conventional methodologies, acoustic approaches provide superior biocompatibility but are intrinsically limited to producing periodic patterns at low resolution due to the nature of standing waves and the coupling between fluid and structure vibrations. This work demonstrates a near-field acoustic platform capable of synthesizing high resolution, complex and non-periodic energy potential wells. A thin and viscoelastic membrane is utilized to modulate the acoustic wavefront on a deep, sub-wavelength scale by suppressing the structural vibration selectively on the platform. Using 3 MHz excitation (λ∼ 500 μm in water), we have experimentally validated such a concept by realizing patterning of microparticles and cells with a line resolution of 50 μm (one tenth of the wavelength). Furthermore, massively parallel patterning across a 3 × 3 mm area has been achieved. This new acoustic wavefront modulation mechanism is powerful for manufacturing complex biologic products.
微物体在液体中的任意图案化对于许多生物医学应用至关重要。在传统方法中,声学方法提供了优异的生物相容性,但由于驻波的性质以及流体和结构振动之间的耦合,其本质上仅限于以低分辨率产生周期性图案。本工作展示了一种近场声学平台,能够合成高分辨率、复杂和非周期性的能量势阱。通过在平台上有选择地抑制结构振动,薄的粘弹性膜用于在深亚波长尺度上调制声波前。使用 3 MHz 的激励(在水中λ∼500 μm),我们通过实现具有 50 μm 的线分辨率(波长的十分之一)的微颗粒和细胞的图案化,实验验证了这一概念。此外,已经实现了跨越 3×3 mm 区域的大规模并行图案化。这种新的声波前调制机制对于制造复杂的生物产品非常有效。