Surappa Sushruta, Pavagada Suraj, Soto Fernando, Akin Demir, Wei Charles, Degertekin F Levent, Demirci Utkan
Bio-Acoustic MEMS in Medicine (BAMM) Lab, Canary Center at Stanford, Department of Radiology, School of Medicine, Stanford University, California, CA, USA.
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
Nat Commun. 2025 Jan 15;16(1):494. doi: 10.1038/s41467-024-55337-0.
Particle manipulation plays a pivotal role in scientific and technological domains such as materials science, physics, and the life sciences. Here, we present a dynamically reconfigurable acoustofluidic metasurface that enables precise trapping and positioning of microscale particles in fluidic environments. By harnessing acoustic-structure interaction in a passive membrane resonator array, we generate localized standing acoustic waves that can be reconfigured in real-time. The resulting radiation force allows for subwavelength manipulation and patterning of particles on the metasurface at individual and collective scales, with actuation frequencies below 2 MHz. We further demonstrate the capabilities of the reconfigurable metasurface in trapping and enriching beads and biological cells flowing in microfluidic channels, showcasing its potential in high-throughput bioanalytical applications. Our versatile and biocompatible particle manipulation platform is suitable for applications ranging from the assembly of colloidal particles to enrichment of rare cells.
粒子操控在材料科学、物理学和生命科学等科技领域中发挥着关键作用。在此,我们展示了一种动态可重构的声流超表面,它能够在流体环境中实现对微尺度粒子的精确捕获和定位。通过利用无源膜谐振器阵列中的声-结构相互作用,我们产生了可实时重构的局域驻波。由此产生的辐射力能够在低于2 MHz的驱动频率下,在超表面上对粒子进行亚波长操控和图案化,无论是单个粒子还是集体尺度。我们进一步展示了可重构超表面在捕获和富集微流控通道中流动的珠子和生物细胞方面的能力,凸显了其在高通量生物分析应用中的潜力。我们这种多功能且具有生物相容性的粒子操控平台适用于从胶体粒子组装到稀有细胞富集等一系列应用。