Kumar Dhaneesh, Krull Cornelius, Yin Yuefeng, Medhekar Nikhil V, Schiffrin Agustin
School of Physics & Astronomy , Monash University , Clayton , Victoria 3800 , Australia.
ARC Centre of Excellence in Future Low-Energy Electronics Technologies , Monash University , Clayton , Victoria 3800 , Australia.
ACS Nano. 2019 Oct 22;13(10):11882-11890. doi: 10.1021/acsnano.9b05950. Epub 2019 Oct 11.
Quantum dots (QD) with electric-field-controlled charge state are promising for electronics applications, , digital information storage, single-electron transistors, and quantum computing. Inorganic QDs consisting of semiconductor nanostructures or heterostructures often offer limited control on size and composition distribution as well as low potential for scalability and/or nanoscale miniaturization. Owing to their tunability and self-assembly capability, using organic molecules as building nanounits can allow for bottom-up synthesis of two-dimensional (2D) nanoarrays of QDs. However, 2D molecular self-assembly protocols are often applicable on metals surfaces, where electronic hybridization and Fermi level pinning can hinder electric-field control of the QD charge state. Here, we demonstrate the synthesis of a single-component self-assembled 2D array of molecules [9,10-dicyanoanthracene (DCA)] that exhibit electric-field-controlled spatially periodic charging on a noble metal surface, Ag(111). The charge state of DCA can be altered (between neutral and negative), depending on its adsorption site, by the local electric field induced by a scanning tunneling microscope tip. Limited metal-molecule interactions result in an effective tunneling barrier between DCA and Ag(111) that enables electric-field-induced electron population of the lowest unoccupied molecular orbital (LUMO) and, hence, charging of the molecule. Subtle site-dependent variation of the molecular adsorption height translates into a significant spatial modulation of the molecular polarizability, dielectric constant, and LUMO energy level alignment, giving rise to a spatially dependent effective molecule-surface tunneling barrier and likelihood of charging. This work offers potential for high-density 2D self-assembled nanoarrays of identical QDs whose charge states can be addressed individually with an electric field.
具有电场控制电荷态的量子点(QD)在电子应用、数字信息存储、单电子晶体管和量子计算方面具有广阔前景。由半导体纳米结构或异质结构组成的无机量子点在尺寸和成分分布控制方面往往有限,并且在可扩展性和/或纳米级小型化方面潜力较低。由于其可调谐性和自组装能力,使用有机分子作为构建纳米单元可以实现量子点二维(2D)纳米阵列的自下而上合成。然而,二维分子自组装协议通常适用于金属表面,在那里电子杂化和费米能级钉扎会阻碍量子点电荷态的电场控制。在这里,我们展示了一种单组分自组装二维分子阵列[9,10 - 二氰基蒽(DCA)]的合成,该阵列在贵金属表面Ag(111)上表现出电场控制的空间周期性充电。DCA的电荷态可以根据其吸附位点,通过扫描隧道显微镜尖端诱导的局部电场在中性和负性之间改变。有限的金属 - 分子相互作用导致DCA与Ag(111)之间形成有效的隧道势垒,这使得电场诱导最低未占据分子轨道(LUMO)的电子填充,从而使分子充电。分子吸附高度的微妙位点依赖性变化转化为分子极化率、介电常数和LUMO能级排列的显著空间调制,产生空间依赖性的有效分子 - 表面隧道势垒和充电可能性。这项工作为相同量子点的高密度二维自组装纳米阵列提供了潜力,其电荷态可以通过电场单独寻址。