Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden.
MAX IV Laboratory, Lund University, Box 118, SE-221 00 Lund, Sweden.
Acta Crystallogr D Struct Biol. 2019 Oct 1;75(Pt 10):937-946. doi: 10.1107/S2059798319012695.
Serial crystallography is having an increasing impact on structural biology. This emerging technique opens up new possibilities for studying protein structures at room temperature and investigating structural dynamics using time-resolved X-ray diffraction. A limitation of the method is the intrinsic need for large quantities of well ordered micrometre-sized crystals. Here, a method is presented to screen for conditions that produce microcrystals of membrane proteins in the lipidic cubic phase using a well-based crystallization approach. A key advantage over earlier approaches is that the progress of crystal formation can be easily monitored without interrupting the crystallization process. In addition, the protocol can be scaled up to efficiently produce large quantities of crystals for serial crystallography experiments. Using the well-based crystallization methodology, novel conditions for the growth of showers of microcrystals of three different membrane proteins have been developed. Diffraction data are also presented from the first user serial crystallography experiment performed at MAX IV Laboratory.
连续结晶学对结构生物学的影响日益增大。这种新兴技术为在室温下研究蛋白质结构以及使用时间分辨 X 射线衍射研究结构动力学开辟了新的可能性。该方法的一个局限性是本质上需要大量有序的微米级微小晶体。在这里,提出了一种使用基于孔的结晶方法筛选产生类脂立方相中的膜蛋白微晶体条件的方法。与早期方法相比,该方法的一个主要优势是可以在不中断结晶过程的情况下轻松监测晶体形成的进展。此外,该方案可以扩展到高效生产大量用于连续结晶实验的晶体。使用基于孔的结晶方法,已经开发出三种不同膜蛋白微晶体簇生长的新条件。还介绍了在 MAX IV 实验室进行的第一个用户连续结晶学实验的衍射数据。