Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
Cell Chem Biol. 2019 Nov 21;26(11):1515-1525.e4. doi: 10.1016/j.chembiol.2019.09.010. Epub 2019 Oct 4.
Mitochondrial sulfide quinone oxidoreductase (SQR) catalyzes the oxidation of HS to glutathione persulfide with concomitant reduction of CoQ. We report herein that the promiscuous activity of human SQR supported the conversion of CoA to CoA-SSH (CoA-persulfide), a potent inhibitor of butyryl-CoA dehydrogenase, and revealed a molecular link between sulfide and butyrate metabolism, which are known to interact. Three different CoQ-bound crystal structures furnished insights into how diverse substrates access human SQR, and provided snapshots of the reaction coordinate. Unexpectedly, the active site cysteines in SQR are configured in a bridging trisulfide at the start and end of the catalytic cycle, and the presence of sulfane sulfur was confirmed biochemically. Importantly, our study leads to a mechanistic proposal for human SQR in which sulfide addition to the trisulfide cofactor eliminates Cys-SSH, forming an intense charge-transfer complex with flavin adenine dinucleotide, and Cys-SSH, which transfers sulfur to an external acceptor.
线粒体硫醌氧化还原酶 (SQR) 催化 HS 氧化为谷胱甘肽过硫化物,同时还原 CoQ。我们在此报告,人类 SQR 的混杂活性支持了 CoA 向 CoA-SSH(CoA-过硫化物)的转化,CoA-SSH 是丁酰基辅酶 A 脱氢酶的强效抑制剂,并揭示了已知相互作用的硫和丁酸代谢之间的分子联系。三种不同的 CoQ 结合晶体结构深入了解了不同的底物如何进入人类 SQR,并提供了反应坐标的快照。出乎意料的是,SQR 中的活性位点半胱氨酸在催化循环的开始和结束时配置为桥连三硫化物,并且硫烷硫的存在在生物化学上得到了证实。重要的是,我们的研究提出了一个人类 SQR 的机制性建议,其中硫化物添加到三硫化物辅因子中消除了 Cys-SSH,与黄素腺嘌呤二核苷酸形成强烈的电荷转移复合物,Cys-SSH 将硫转移到外部受体。