State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry , Nankai University , Tianjin 300071 , China.
College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha 410081 , China.
ACS Nano. 2019 Oct 22;13(10):11593-11602. doi: 10.1021/acsnano.9b05354. Epub 2019 Oct 10.
Dynamic changes of mitochondrial morphology play an important role in cellular metabolism. Real-time monitoring mitochondrial ultrastructural dynamics at nanometer-scale resolution is crucially desired for further understanding of the mitochondria-based cellular function. In this work, we introduce a fluorescent carbon dot, which can selectively target mitochondria in live cells (named as MitoCD). MitoCD can effectively accumulate in mitochondria regardless of the decrease or vanishing of mitochondrial membrane potential (MMP), enabling the exploration of MMP-independent mitochondrial process. Moreover, the MitoCD is a thiol-based reaction-free probe that target mitochondria without consuming the thiol groups from mitochondrial proteins. Additionally, the MitoCD possesses good photophysical properties under physiological conditions, such as burst-like blinking, high photon counts, and low "on"/"off" ratio, which are specifically suitable for localization-based nanoscopic imaging. According to the optical microscopic imaging results, dynamical fission and fusion processes from mitochondria have been observed in live cells. During mitophagy, it is found that reticular formation of the mitochondria gradually collapsed, and then a portion of mitochondria split and vanished. Owing to the attractive biological and special photophysical properties, this probe displays promising application in a variety of super-resolution based biological studies and will provide deep insight in mitochondrial metabolism.
线粒体形态的动态变化在细胞代谢中起着重要作用。为了进一步了解基于线粒体的细胞功能,迫切需要实时监测纳米级分辨率的线粒体超微结构动力学。在这项工作中,我们引入了一种荧光碳点,它可以选择性地靶向活细胞中的线粒体(命名为 MitoCD)。无论线粒体膜电位(MMP)降低还是消失,MitoCD 都可以有效地在线粒体中积累,从而可以探索 MMP 不依赖的线粒体过程。此外,MitoCD 是一种基于硫醇的无反应探针,它可以靶向线粒体而不消耗线粒体蛋白中的硫醇基团。此外,MitoCD 在生理条件下具有良好的光物理性质,例如突发式闪烁、高光子计数和低“开”/“关”比,非常适合基于定位的纳米级成像。根据光学显微镜成像结果,在活细胞中观察到了线粒体的动态裂变和融合过程。在自噬过程中,发现线粒体的网状结构逐渐崩溃,然后一部分线粒体分裂消失。由于其吸引人的生物学特性和特殊的光物理性质,该探针在各种基于超分辨率的生物学研究中具有广阔的应用前景,并将为线粒体代谢提供深入的见解。