Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
Cell Res. 2020 Jan;30(1):5-20. doi: 10.1038/s41422-019-0236-6. Epub 2019 Oct 8.
Protein biogenesis at the endoplasmic reticulum (ER) in eukaryotic cells is monitored by a protein quality control system named ER-associated protein degradation (ERAD). While there has been substantial progress in understanding how ERAD eliminates defective polypeptides generated from erroneous folding, how cells remove nascent chains stalled in the translocon during co-translational protein insertion into the ER is unclear. Here we show that ribosome stalling during protein translocation induces the attachment of UFM1, a ubiquitin-like modifier, to two conserved lysine residues near the COOH-terminus of the 60S ribosomal subunit RPL26 (uL24) at the ER. Strikingly, RPL26 UFMylation enables the degradation of stalled nascent chains, but unlike ERAD or previously established cytosolic ribosome-associated quality control (RQC), which uses proteasome to degrade their client proteins, ribosome UFMylation promotes the targeting of a translocation-arrested ER protein to lysosomes for degradation. RPL26 UFMylation is upregulated during erythroid differentiation to cope with increased secretory flow, and compromising UFMylation impairs protein secretion, and ultimately hemoglobin production. We propose that in metazoan, co-translational protein translocation into the ER is safeguarded by a UFMylation-dependent protein quality control mechanism, which when impaired causes anemia in mice and abnormal neuronal development in humans.
真核细胞内质网(ER)中的蛋白质生物发生受到一种称为 ER 相关蛋白降解(ERAD)的蛋白质质量控制系统的监测。虽然人们在理解 ERAD 如何消除错误折叠产生的有缺陷多肽方面已经取得了相当大的进展,但细胞如何去除翻译共转过程中在易位通道中停滞的新生肽链,以便将新生肽链插入 ER 中,目前还不清楚。在这里,我们表明,蛋白质易位过程中核糖体的停顿会诱导泛素样修饰物 UFM1 附着到 60S 核糖体亚基 RPL26(uL24)COOH 末端附近的两个保守赖氨酸残基上。引人注目的是,RPL26 的 UFMylation 使停滞的新生肽链能够降解,但与 ERAD 或以前建立的细胞质核糖体相关质量控制(RQC)不同,后者使用蛋白酶体降解其客户蛋白,核糖体 UFMylation 促进将易位阻滞的 ER 蛋白靶向溶酶体进行降解。在红细胞分化过程中,RPL26 的 UFMylation 上调,以应对增加的分泌流量,而破坏 UFMylation 会损害蛋白质分泌,并最终影响血红蛋白的产生。我们提出,在后生动物中,共翻译蛋白向 ER 的易位受到 UFMylation 依赖的蛋白质质量控制机制的保护,当该机制受损时,会导致小鼠贫血和人类神经元发育异常。