Institut de Recherche Expérimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Université Catholique de Louvain, Brussels, 1200, Belgium.
Department of Oncology, Laboratory of Experimental Radiotherapy, Katholieke Universiteit Leuven, Leuven, 3000, Belgium.
Med Phys. 2019 Dec;46(12):5434-5443. doi: 10.1002/mp.13850. Epub 2019 Oct 29.
Robust optimization is becoming the gold standard for generating robust plans against various kinds of treatment uncertainties. Today, most robust optimization strategies use a pragmatic set of treatment scenarios (the so-called uncertainty set) consisting of combinations of maximum errors, of each considered uncertainty source (such as tumor motion, setup and image-conversion errors). This approach presents two key issues. First, a subset of considered scenarios is unnecessarily improbable which could potentially compromise the plan quality. Second, the resulting large uncertainty set leads to long plan computation times, which limits the potential for robust optimization as a standard clinical tool. In order to address these issues, a method is introduced which is able to preselect a limited set of relevant treatment error scenarios.
Uncertainties due to systematic setup errors, image-conversion errors and respiratory tumor motion are considered. A four-dimensional (4D)-equiprobability hypersurface is defined, which takes into account the joint probabilities of the above-mentioned uncertainty sources. Only scenarios that lie on the predefined 4D hypersurface are considered, guaranteeing statistical consistency of the uncertainty set. In this regard, twelve scenarios are selected that cover maximum spatial displacements of the tumor during breathing. Subsequently, additional scenarios are considered (sampled from the aforementioned 4D hypersurface) in order to cover any estimated residual range errors. Two different scenario-selection procedures were tested: (a) the maximum displacements (MD) method that only considers twelve scaled maximum displacement scenarios and (b) maximum displacements and residual range (MDR) method which, in addition to the scaled maximum displacement scenarios, considers additional maximum range uncertainty scenarios. The methods were tested for five lung cancer patients by performing comprehensive Monte Carlo robustness evaluations.
A plan computation time gain of 78% is achieved by applying the MD method, whilst obtaining a target robustness of D larger than 95% of the prescribed dose, for the worst-case scenario. Additionally, the MD method has the potential to be fully automatic which makes it a promising candidate for fast automatic planning workflows. The MDR method produced plans with excellent target robustness (D larger than 95% of the prescribed dose, even for the worst-case scenario), whilst still obtaining a significant plan computation time gain of 57%.
Two scenario-selection procedures were developed which achieved significant reduction of plan computation time and memory consumption, without compromising plan quality or robustness.
稳健优化正在成为生成针对各种治疗不确定性的稳健计划的黄金标准。如今,大多数稳健优化策略使用一组实用的治疗方案(所谓的不确定性集),其中包括每个考虑的不确定性源(例如肿瘤运动、设置和图像转换误差)的最大误差组合。这种方法存在两个关键问题。首先,一些考虑的方案不太可能发生,但这可能会影响计划的质量。其次,由此产生的大型不确定性集导致计划计算时间过长,限制了稳健优化作为标准临床工具的潜力。为了解决这些问题,引入了一种能够预先选择有限数量的相关治疗误差方案的方法。
考虑了系统设置误差、图像转换误差和呼吸肿瘤运动引起的不确定性。定义了一个四维(4D)等概率超曲面,该超曲面考虑了上述不确定性源的联合概率。仅考虑位于预定义的 4D 超曲面上的方案,保证不确定性集的统计一致性。在这方面,选择了 12 个方案,这些方案覆盖了肿瘤在呼吸过程中的最大空间位移。随后,考虑了其他方案(从上述 4D 超曲面中采样),以覆盖任何估计的剩余范围误差。测试了两种不同的方案选择程序:(a)仅考虑 12 个缩放最大位移方案的最大位移(MD)方法和(b)除缩放最大位移方案外还考虑额外最大范围不确定性方案的最大位移和剩余范围(MDR)方法。通过对五名肺癌患者进行全面的蒙特卡罗稳健性评估来测试这些方法。
应用 MD 方法可将计划计算时间提高 78%,同时在最坏情况下获得目标稳健性 D 大于规定剂量的 95%。此外,MD 方法具有完全自动化的潜力,使其成为快速自动规划工作流程的有前途的候选方法。MDR 方法生成的计划具有出色的目标稳健性(即使在最坏情况下,D 也大于规定剂量的 95%),同时仍获得显著的计划计算时间提高 57%。
开发了两种方案选择程序,这些程序在不影响计划质量或稳健性的情况下,显著减少了计划计算时间和内存消耗。