Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
Nat Commun. 2019 Oct 9;10(1):4593. doi: 10.1038/s41467-019-12613-8.
Charged defects at the surface of the organic-inorganic perovskite active layer are detrimental to solar cells due to exacerbated charge carrier recombination. Here we show that charged surface defects can be benign after passivation and further exploited for reconfiguration of interfacial energy band structure. Based on the electrostatic interaction between oppositely charged ions, Lewis-acid-featured fullerene skeleton after iodide ionization (PCBB-3N-3I) not only efficiently passivates positively charged surface defects but also assembles on top of the perovskite active layer with preferred orientation. Consequently, PCBB-3N-3I with a strong molecular electric dipole forms a dipole interlayer to reconfigure interfacial energy band structure, leading to enhanced built-in potential and charge collection. As a result, inverted structure planar heterojunction perovskite solar cells exhibit the promising power conversion efficiency of 21.1% and robust ambient stability. This work opens up a new window to boost perovskite solar cells via rational exploitation of charged defects beyond passivation.
在有机-无机钙钛矿活性层的表面存在带电缺陷会加剧载流子复合,从而对太阳能电池造成损害。在这里,我们表明在钝化后,带电表面缺陷可以是良性的,并且可以进一步被利用来重新配置界面能带结构。基于相反带电离子之间的静电相互作用,具有路易斯酸特征的富勒烯骨架在碘离子化后(PCBB-3N-3I)不仅可以有效地钝化带正电的表面缺陷,而且还可以优先取向地组装在钙钛矿活性层的顶部。因此,具有强分子电偶极矩的 PCBB-3N-3I 形成偶极子夹层以重新配置界面能带结构,从而提高内置电势和电荷收集。结果,倒置结构平面异质结钙钛矿太阳能电池表现出有前途的 21.1%的功率转换效率和稳健的环境稳定性。这项工作为通过合理利用带电缺陷(超越钝化)来提高钙钛矿太阳能电池开辟了一个新的窗口。