Department of Molecular and Cell Biology, University of California, Berkeley, California.
California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, California.
Protein Sci. 2020 Feb;29(2):407-419. doi: 10.1002/pro.3743. Epub 2019 Oct 17.
Translocases of the AAA+ (ATPases Associated with various cellular Activities) family are powerful molecular machines that use the mechano-chemical coupling of ATP hydrolysis and conformational changes to thread DNA or protein substrates through their central channel for many important biological processes. These motors comprise hexameric rings of ATPase subunits, in which highly conserved nucleotide-binding domains form active-site pockets near the subunit interfaces and aromatic pore-loop residues extend into the central channel for substrate binding and mechanical pulling. Over the past 2 years, 41 cryo-EM structures have been solved for substrate-bound AAA+ translocases that revealed spiral-staircase arrangements of pore-loop residues surrounding substrate polypeptides and indicating a conserved hand-over-hand mechanism for translocation. The subunits' vertical positions within the spiral arrangements appear to be correlated with their nucleotide states, progressing from ATP-bound at the top to ADP or apo states at the bottom. Studies describing multiple conformations for a particular motor illustrate the potential coupling between ATP-hydrolysis steps and subunit movements to propel the substrate. Experiments with double-ring, Type II AAA+ motors revealed an offset of hydrolysis steps between the two ATPase domains of individual subunits, and the upper ATPase domains lacking aromatic pore loops frequently form planar rings. This review summarizes the critical advances provided by recent studies to our structural and functional understanding of hexameric AAA+ translocases, as well as the important outstanding questions regarding the underlying mechanisms for coordinated ATP-hydrolysis and mechano-chemical coupling.
AAA+(与各种细胞活动相关的 ATP 酶)家族的转位酶是强大的分子机器,它们利用 ATP 水解和构象变化的机械化学偶联,通过中央通道将 DNA 或蛋白质底物穿过,从而进行许多重要的生物学过程。这些马达由六聚体 ATP 酶亚基环组成,其中高度保守的核苷酸结合结构域在亚基界面附近形成活性位点口袋,而芳香族孔环残基延伸到中央通道中,用于底物结合和机械牵拉。在过去的 2 年中,已经解决了 41 个结合底物的 AAA+转位酶的冷冻电镜结构,这些结构揭示了孔环残基围绕底物多肽的螺旋梯级排列,并表明存在保守的逐次机制进行易位。亚基在螺旋排列中的垂直位置似乎与它们的核苷酸状态相关,从顶部的 ATP 结合状态到底部的 ADP 或无配体状态逐渐进展。描述特定马达的多个构象的研究说明了 ATP 水解步骤和亚基运动之间的潜在耦合,以推动底物。带有双环、II 型 AAA+马达的实验揭示了单个亚基的两个 ATP 酶结构域之间水解步骤的偏移,并且缺乏芳香族孔环的上 ATP 酶结构域经常形成平面环。本综述总结了最近的研究为我们对六聚体 AAA+转位酶的结构和功能理解提供的关键进展,以及关于协调的 ATP 水解和机械化学偶联的潜在机制的重要未解决问题。