Suppr超能文献

基于深度残差 U-Net 的光学相干断层成像易损斑块分割。

Optical Coherence Tomography Vulnerable Plaque Segmentation Based on Deep Residual U-Net.

机构信息

College of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110004, P. R. China.

College of Information Science and Engineering, Northeastern University, Shenyang, 110004, P. R. China.

出版信息

Rev Cardiovasc Med. 2019 Sep 30;20(3):171-177. doi: 10.31083/j.rcm.2019.03.5201.

Abstract

Automatic and accurate segmentation of intravascular optical coherence tomography imagery is of great importance in computer-aided diagnosis and in treatment of cardiovascular diseases. However, this task has not been well addressed for two reasons. First, because of the difficulty of acquisition, and the laborious labeling from personnel, optical coherence tomography image datasets are usually small. Second, optical coherence tomography images contain a variety of imaging artifacts, which hinder a clear observation of the vascular wall. In order to overcome these limitations, a new method of cardiovascular vulnerable plaque segmentation is proposed. This method constructs a novel Deep Residual U-Net to segment vulnerable plaque regions. Furthermore, in order to overcome the inaccuracy in object boundary segmentation which previous research has shown extensively, a loss function consisting of weighted cross-entropy loss and Dice coefficient is proposed to solve this problem. Thorough experiments and analysis have been carried out to verify the effectiveness and superior performance of the proposed method.

摘要

自动且准确地对血管内光学相干断层成像图像进行分割在计算机辅助诊断和心血管疾病治疗中具有重要意义。然而,由于采集困难以及人员标记的繁琐,光学相干断层成像图像数据集通常较小,这使得该任务尚未得到很好的解决。其次,光学相干断层成像图像包含多种成像伪影,这阻碍了对血管壁的清晰观察。为了克服这些限制,提出了一种新的心血管易损斑块分割方法。该方法构建了一种新颖的深度残差 U-Net 来分割易损斑块区域。此外,为了克服先前研究广泛表明的对象边界分割不准确的问题,提出了一种由加权交叉熵损失和 Dice 系数组成的损失函数来解决这个问题。已经进行了彻底的实验和分析,以验证所提出方法的有效性和优越性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验