Meng He, Zhao Ran, Zhang Ying, Zhang Bo, Zhang Cheng, Wang Di, Sun Jinlu
Chest hospital, Tianjin University, Tianjin, China.
School of Electronics & Information Engineering, Tiangong University, Tianjin, China.
PLoS One. 2025 Jun 10;20(6):e0325911. doi: 10.1371/journal.pone.0325911. eCollection 2025.
Currently, plaque segmentation in Optical Coherence Tomography (OCT) images of coronary arteries is primarily carried out manually by physicians, and the accuracy of existing automatic segmentation techniques needs further improvement. To furnish efficient and precise decision support, automated detection of plaques in coronary OCT images holds paramount importance. For addressing these challenges, we propose a novel deep learning algorithm featuring Dense Atrous Convolution (DAC) and attention mechanism to realize high-precision segmentation and classification of Coronary artery plaques. Then, a relatively well-established dataset covering 760 original images, expanded to 8,000 using data enhancement. This dataset serves as a significant resource for future research endeavors. The experimental results demonstrate that the dice coefficients of calcified, fibrous, and lipid plaques are 0.913, 0.900, and 0.879, respectively, surpassing those generated by five other conventional medical image segmentation networks. These outcomes strongly attest to the effectiveness and superiority of our proposed algorithm in the task of automatic coronary artery plaque segmentation.
目前,冠状动脉光学相干断层扫描(OCT)图像中的斑块分割主要由医生手动进行,现有自动分割技术的准确性有待进一步提高。为了提供高效且精确的决策支持,冠状动脉OCT图像中斑块的自动检测至关重要。为应对这些挑战,我们提出了一种具有密集空洞卷积(DAC)和注意力机制的新型深度学习算法,以实现冠状动脉斑块的高精度分割和分类。然后,一个相对完善的数据集涵盖760张原始图像,通过数据增强扩展到8000张。该数据集是未来研究工作的重要资源。实验结果表明,钙化、纤维和脂质斑块的骰子系数分别为0.913、0.900和0.879,超过了其他五个传统医学图像分割网络生成的系数。这些结果有力地证明了我们提出的算法在自动冠状动脉斑块分割任务中的有效性和优越性。