Suppr超能文献

基于双路径级联卷积神经网络架构的光学相干断层扫描成像冠状动脉斑块特征分析

Coronary Plaque Characterization From Optical Coherence Tomography Imaging With a Two-Pathway Cascade Convolutional Neural Network Architecture.

作者信息

Yin Yifan, He Chunliu, Xu Biao, Li Zhiyong

机构信息

School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.

Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing, China.

出版信息

Front Cardiovasc Med. 2021 Jun 16;8:670502. doi: 10.3389/fcvm.2021.670502. eCollection 2021.

Abstract

The morphological structure and tissue composition of a coronary atherosclerotic plaque determine its stability, which can be assessed by intravascular optical coherence tomography (OCT) imaging. However, plaque characterization relies on the interpretation of large datasets by well-trained observers. This study aims to develop a convolutional neural network (CNN) method to automatically extract tissue features from OCT images to characterize the main components of a coronary atherosclerotic plaque (fibrous, lipid, and calcification). The method is based on a novel CNN architecture called TwopathCNN, which is utilized in a cascaded structure. According to the evaluation, this proposed method is effective and robust in the characterization of coronary plaque composition from OCT imaging. On average, the method achieves 0.86 in F1-score and 0.88 in accuracy. The TwopathCNN architecture and cascaded structure show significant improvement in performance ( < 0.05). CNN with cascaded structure can greatly improve the performance of characterization compared to the conventional CNN methods and machine learning methods. This method has a higher efficiency, which may be proven to be a promising diagnostic tool in the detection of coronary plaques.

摘要

冠状动脉粥样硬化斑块的形态结构和组织成分决定了其稳定性,可通过血管内光学相干断层扫描(OCT)成像进行评估。然而,斑块特征的判定依赖于训练有素的观察者对大量数据集的解读。本研究旨在开发一种卷积神经网络(CNN)方法,以自动从OCT图像中提取组织特征,从而对冠状动脉粥样硬化斑块的主要成分(纤维、脂质和钙化)进行特征描述。该方法基于一种名为TwopathCNN的新型CNN架构,该架构以级联结构使用。根据评估,所提出的方法在从OCT成像中表征冠状动脉斑块成分方面是有效且稳健的。平均而言,该方法的F1分数为0.86,准确率为0.88。TwopathCNN架构和级联结构在性能上有显著提升(<0.05)。与传统的CNN方法和机器学习方法相比,具有级联结构的CNN在特征描述性能上有很大提高。该方法具有更高的效率,可能被证明是检测冠状动脉斑块的一种有前景的诊断工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6926/8241907/39bff3f886de/fcvm-08-670502-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验