Constellation Analytics, LLC., Needham, MA USA.
2The Medical School, University of Sheffield, Sheffield, S10 2RX UK.
NPJ Syst Biol Appl. 2019 Oct 3;5:36. doi: 10.1038/s41540-019-0113-4. eCollection 2019.
Personalised medicine has predominantly focused on genetically altered cancer genes that stratify drug responses, but there is a need to objectively evaluate differential pharmacology patterns at a subpopulation level. Here, we introduce an approach based on unsupervised machine learning to compare the pharmacological response relationships between 327 pairs of cancer therapies. This approach integrated multiple measures of response to identify subpopulations that react differently to inhibitors of the same or different targets to understand mechanisms of resistance and pathway cross-talk. MEK, BRAF, and PI3K inhibitors were shown to be effective as combination therapies for particular mutant subpopulations. A systematic analysis of preclinical data for a failed phase III trial of selumetinib combined with docetaxel in lung cancer suggests potential indications in pancreatic and colorectal cancers with mutation. This data-informed study exemplifies a method for stratified medicine to identify novel cancer subpopulations, their genetic biomarkers, and effective drug combinations.
个体化医学主要集中在对药物反应进行分层的基因改变的癌症基因上,但需要客观地评估亚人群水平的差异药理学模式。在这里,我们引入了一种基于无监督机器学习的方法来比较 327 对癌症治疗方法的药理反应关系。这种方法整合了多种反应测量方法,以确定对同一或不同靶点的抑制剂反应不同的亚人群,从而了解耐药机制和途径串扰。MEK、BRAF 和 PI3K 抑制剂已被证明是针对特定突变亚群的有效联合治疗方法。对肺癌中 selumetinib 联合多西紫杉醇的 III 期临床试验失败的临床前数据进行系统分析表明,该药物在具有 突变的胰腺癌和结直肠癌中具有潜在的适应证。这项数据驱动的研究为识别新的癌症亚人群、其遗传生物标志物和有效的药物组合提供了个体化医学的范例。