Department of Biochemistry and Molecular Biology, Leonard M. Miller School of Medicine , University of Miami , 1011 NW 15th Street , Miami , Florida 33136 , United States.
Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, Leonard M. Miller School of Medicine , University of Miami , 1951 NW 7th Avenue, Suite 475 , Miami , Florida 33136 , United States.
ACS Nano. 2019 Oct 22;13(10):11034-11048. doi: 10.1021/acsnano.9b02807. Epub 2019 Oct 11.
The spread of Zika virus (ZIKV) infection across the USA and various countries in the last three years will not only have a direct impact on the U.S. health care system but has caused international concerns as well. The ultimate impact of ZIKV infection remains to be understood. Currently, there are no therapeutic or vaccine options available to protect those infected by ZIKV. The drug ivermectin (IVM) was found to be a viable agent for the prevention of transmission of ZIKV. Ivermectin is unstable in the presence of water and does not remain in adequate concentration in the human bloodstream to be effective in treatment for ZIKV. Biodegradable nanoparticles would aid in the delivery of ivermectin by providing a high enough concentration of drug and ensuring the drug is gradually released to maintain an appropriate level in the body. The overall goal of this study was to develop and optimize an orally administrable nanoformulation of IVM which can circulate in the blood for a long period for efficient delivery. To achieve the goal, we synthesized and optimized a synthetic nanoformulation of IVM for oral use which can cross the intestinal epithelial barrier to enter the bloodstream. Our studies documented that when delivered with the synthetic nanoparticle (NP), IVM can be accumulated in the blood at a higher concentration and preliminary studies highlighted that NP delivered IVM has the ability to target nonstructural 1 protein of ZIKV. For potential clinical relevance, long-term storable formulation of IVM-nanoparticle in dry powder state for inclusion in a capsule form and cryoprotectant containing frozen forms revealed promising findings. Further, our preliminary studies documented that ivermectin crosses the placental barrier, thus making it unsafe for the pregnant ZIKV population, whereas the ivermectin-loaded nanoparticle did not show any significant placental barrier crossing, thus indicating its potential suitability for such population. We envision that this work will fill a great unmet need by developing safer and more effective therapies for the treatment of viral infections, including ZIKV.
寨卡病毒(ZIKV)感染在美国和过去三年中在多个国家的传播,不仅将直接影响美国的医疗保健系统,也引起了国际社会的关注。ZIKV 感染的最终影响仍有待了解。目前,尚无治疗或疫苗可供保护感染 ZIKV 的人群。伊维菌素(IVM)被发现是预防 ZIKV 传播的可行药物。然而,IVM 在水中不稳定,在人体血液中无法保持足够的浓度,因此在治疗 ZIKV 方面效果不佳。可生物降解的纳米粒子将有助于通过提供足够高的药物浓度并确保药物逐渐释放以维持体内适当水平来输送伊维菌素。本研究的总体目标是开发和优化一种可口服的 IVM 纳米制剂,该制剂可在血液中长时间循环,以实现有效的传递。为了实现这一目标,我们合成并优化了一种可口服的 IVM 纳米制剂,使其能够穿过肠上皮屏障进入血液。我们的研究表明,当与合成纳米颗粒(NP)一起使用时,IVM 可以在血液中积累到更高的浓度,初步研究表明,NP 递送的 IVM 具有靶向 ZIKV 非结构 1 蛋白的能力。为了具有潜在的临床相关性,以干粉状态长期储存 IVM-纳米粒子的配方,并在包含冷冻保护剂的冷冻形式中进行了研究,结果令人鼓舞。此外,我们的初步研究表明,伊维菌素穿过胎盘屏障,因此对感染 ZIKV 的孕妇人群不安全,而负载伊维菌素的纳米颗粒没有显示出任何明显的胎盘屏障穿透,因此表明其对该人群具有潜在的适用性。我们设想,这项工作将通过开发更安全、更有效的治疗病毒感染(包括 ZIKV)的疗法来满足这一巨大的未满足需求。