Suppr超能文献

纳米技术介导的两种不可渗透膜的交叉以调节神经血管单元的星形胶质细胞来实现神经保护。

Nanotechnology-mediated crossing of two impermeable membranes to modulate the stars of the neurovascular unit for neuroprotection.

机构信息

Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136.

Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136.

出版信息

Proc Natl Acad Sci U S A. 2018 Dec 26;115(52):E12333-E12342. doi: 10.1073/pnas.1816429115. Epub 2018 Dec 10.

Abstract

The success of nanoparticle-mediated delivery of antioxidant and antiinflammatory-based neuroprotectants to the brain to improve neuronal functions in neurodegenerative diseases has demonstrated lesser impact instead of achieving its full potential. We hypothesized that these failures were due to a combination of parameters, such as: () unavailability of a delivery vehicle, which can reproducibly and efficiently transport through the brain capillary endothelium; () inefficient uptake of therapeutic nanoparticles in the neuronal cell population; and () limited ability of a single nanoparticle to cross the two most-impermeable biological barriers, the blood-brain barrier and mitochondrial double membrane, so that a nanoparticle can travel through the brain endothelial barrier to the mitochondria of target cells where oxidative damage is localized. Herein, we demonstrate optimization of a biodegradable nanoparticle for efficient brain accumulation and protection of astrocytes from oxidative damage and mitochondrial dysfunctions to enhance the neuroprotection ability of astrocytes toward neurons using neurodegeneration characteristics in SOD1 rats. This biodegradable nanomedicine platform with the ability to accumulate in the brain has the potential to bring beneficial effects in neurodegenerative diseases by modulating the stars, astrocytes in the brain, to enhance their neuroprotective actions.

摘要

纳米颗粒介导的抗氧化和抗炎神经保护剂递送至大脑以改善神经退行性疾病中的神经元功能的成功,已经证明其影响较小,而未能发挥其全部潜力。我们假设这些失败是由于多种因素的综合作用,例如:(1)缺乏能够可重复且有效地穿过脑毛细血管内皮的递药载体;(2)治疗性纳米颗粒在神经元细胞群体中的摄取效率低下;以及(3)单个纳米颗粒穿过两个最不易渗透的生物屏障(血脑屏障和线粒体双层膜)的能力有限,因此纳米颗粒可以通过脑内皮屏障到达目标细胞的线粒体,而氧化损伤定位于该处。在此,我们证明了可生物降解纳米颗粒的优化,以有效积累并保护星形胶质细胞免受氧化损伤和线粒体功能障碍,从而增强星形胶质细胞对神经元的神经保护作用,利用 SOD1 大鼠的神经退行性变特征。这种具有在大脑中积累能力的生物可降解纳米医学平台,通过调节大脑中的“明星”——星形胶质细胞,有可能在神经退行性疾病中带来有益的效果,增强其神经保护作用。

相似文献

2
The Essential Role of Astrocytes in Neurodegeneration and Neuroprotection.星形胶质细胞在神经变性和神经保护中的基本作用。
CNS Neurol Disord Drug Targets. 2024;23(9):1101-1119. doi: 10.2174/0118715273269881231012062255.
4
Neuroprotection by curcumin: A review on brain delivery strategies.姜黄素的神经保护作用:脑内递药策略的综述。
Int J Pharm. 2020 Jul 30;585:119476. doi: 10.1016/j.ijpharm.2020.119476. Epub 2020 May 27.
5
Nanotechnology for neurodegenerative disorders.纳米技术治疗神经退行性疾病。
Nanomedicine. 2012 Sep;8 Suppl 1:S51-8. doi: 10.1016/j.nano.2012.05.007. Epub 2012 May 26.

引用本文的文献

5
Biomaterial strategies for regulating the neuroinflammatory response.调节神经炎症反应的生物材料策略。
Mater Adv. 2024 Apr 10;5(10):4025-4054. doi: 10.1039/d3ma00736g. eCollection 2024 May 20.

本文引用的文献

6
Effect of PLGA NP size on efficiency to target traumatic brain injury.PLGA NP 粒径对靶向创伤性脑损伤效率的影响。
J Control Release. 2016 Feb 10;223:31-41. doi: 10.1016/j.jconrel.2015.12.029. Epub 2015 Dec 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验