IEEE J Biomed Health Inform. 2020 Jul;24(7):2028-2040. doi: 10.1109/JBHI.2019.2946676. Epub 2019 Oct 10.
Learning brain effective connectivity (EC) networks from functional magnetic resonance imaging (fMRI) data has become a new hot topic in the neuroinformatics field. However, how to accurately and efficiently learn brain EC networks is still a challenging problem. In this paper, we propose a new algorithm to learn the brain EC network structure using ant colony optimization (ACO) algorithm combining with voxel activation information, named as VACOEC. First, VACOEC uses the voxel activation information to measure the independence between each pair of brain regions and effectively restricts the space of candidate solutions, which makes many unnecessary searches of ants be avoided. Then, by combining the global score increase of a solution with the voxel activation information, a new heuristic function is designed to guide the process of ACO to search for the optimal solution. The experimental results on simulated datasets show that the proposed method can accurately and efficiently identify the directions of the brain EC networks. Moreover, the experimental results on real-world data show that patients with Alzheimers disease (AD) exhibit decreased effective connectivity not only in the intra-network within the default mode network (DMN) and salience network (SN), but also in the inter-network between DMN and SN, compared with normal control (NC) subjects. The experimental results demonstrate that VACOEC is promising for practical applications in the neuroimaging studies of geriatric subjects and neurological patients.
从功能磁共振成像 (fMRI) 数据中学习大脑有效连接 (EC) 网络已成为神经信息学领域的一个新热点。然而,如何准确有效地学习大脑 EC 网络仍然是一个具有挑战性的问题。在本文中,我们提出了一种新的算法,使用蚁群优化 (ACO) 算法结合体素激活信息来学习大脑 EC 网络结构,称为 VACOEC。首先,VACOEC 使用体素激活信息来测量每个大脑区域之间的独立性,并有效地限制候选解的空间,从而避免了许多不必要的蚂蚁搜索。然后,通过结合解的全局得分增加和体素激活信息,设计了一个新的启发式函数来指导 ACO 搜索最优解的过程。在模拟数据集上的实验结果表明,所提出的方法可以准确有效地识别大脑 EC 网络的方向。此外,在真实世界数据上的实验结果表明,与正常对照组 (NC) 受试者相比,阿尔茨海默病 (AD) 患者不仅在默认模式网络 (DMN) 和突显网络 (SN) 内网络中,而且在 DMN 和 SN 之间的网络间也表现出有效连接的减少。实验结果表明,VACOEC 有望在老年受试者和神经患者的神经影像学研究中得到实际应用。