Suppr超能文献

基于时熵评分从 fMRI 时间序列推断有效连接网络。

Inferring Effective Connectivity Networks From fMRI Time Series With a Temporal Entropy-Score.

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Oct;33(10):5993-6006. doi: 10.1109/TNNLS.2021.3072149. Epub 2022 Oct 5.

Abstract

Inferring brain-effective connectivity networks from neuroimaging data has become a very hot topic in neuroinformatics and bioinformatics. In recent years, the search methods based on Bayesian network score have been greatly developed and become an emerging method for inferring effective connectivity. However, the previous score functions ignore the temporal information from functional magnetic resonance imaging (fMRI) series data and may not be able to determine all orientations in some cases. In this article, we propose a novel score function for inferring effective connectivity from fMRI data based on the conditional entropy and transfer entropy (TE) between brain regions. The new score employs the TE to capture the temporal information and can effectively infer connection directions between brain regions. Experimental results on both simulated and real-world data demonstrate the efficacy of our proposed score function.

摘要

从神经影像学数据中推断大脑有效连接网络已经成为神经信息学和生物信息学中的一个非常热门的话题。近年来,基于贝叶斯网络得分的搜索方法得到了极大的发展,并成为推断有效连接的一种新兴方法。然而,以前的得分函数忽略了功能磁共振成像(fMRI)系列数据中的时间信息,在某些情况下可能无法确定所有方向。在本文中,我们提出了一种基于脑区之间的条件熵和转移熵(TE)的从 fMRI 数据中推断有效连接的新得分函数。新的得分函数利用 TE 来捕获时间信息,可以有效地推断脑区之间的连接方向。在模拟和真实世界数据上的实验结果证明了我们提出的得分函数的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验