Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
K. G. Jebsen Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, Norway.
PLoS Med. 2019 Oct 11;16(10):e1002883. doi: 10.1371/journal.pmed.1002883. eCollection 2019 Oct.
Recurrent venous thromboembolism (VTE) is common. Current guidelines suggest that patients with unprovoked VTE should continue anticoagulants unless they have a high bleeding risk, whereas all others can stop. Prediction models may refine this dichotomous distinction, but existing models apply only to patients with unprovoked first thrombosis. We aimed to develop a prediction model for all patients with first VTE, either provoked or unprovoked.
Data were used from two population-based cohorts of patients with first VTE from the Netherlands (Multiple Environment and Genetic Assessment of Risk Factors for Venous Thrombosis [MEGA] follow-up study, performed from 1994 to 2009; model derivation; n = 3,750) and from Norway (Tromsø study, performed from 1999 to 2016; model validation; n = 663). Four versions of a VTE prediction model were developed: model A (clinical, laboratory, and genetic variables), model B (clinical variables and fewer laboratory markers), model C (clinical and genetic factors), and model D (clinical variables only). The outcome measure was recurrent VTE. To determine the discriminatory power, Harrell's C-statistic was calculated. A prognostic score was assessed for each patient. Kaplan-Meier plots for the observed recurrence risks were created in quintiles of the prognostic scores. For each patient, the 2-year predicted recurrence risk was calculated. Models C and D were validated in the Tromsø study. During 19,201 person-years of follow-up (median duration 5.7 years) in the MEGA study, 507 recurrences occurred. Model A had the highest predictive capability, with a C-statistic of 0.73 (95% CI 0.71-0.76). The discriminative performance was somewhat lower in the other models, with C-statistics of 0.72 for model B, 0.70 for model C, and 0.69 for model D. Internal validation showed a minimal degree of optimism bias. Models C and D were externally validated, with C-statistics of 0.64 (95% CI 0.62-0.66) and 0.65 (95% CI 0.63-0.66), respectively. According to model C, in 2,592 patients with provoked first events, 367 (15%) patients had a predicted 2-year risk of >10%, whereas in 1,082 patients whose first event was unprovoked, 484 (45%) had a predicted 2-year risk of <10%. A limitation of both cohorts is that laboratory measurements were missing in a substantial proportion of patients, which therefore were imputed.
The prediction model we propose applies to patients with provoked or unprovoked first VTE-except for patients with (a history of) cancer-allows refined risk stratification, and is easily usable. For optimal individualized treatment, a management study in which bleeding risks are also taken into account is necessary.
复发性静脉血栓栓塞症(VTE)较为常见。目前的指南建议,除非患者有较高的出血风险,否则应继续抗凝治疗,而对于其他患者则可以停药。预测模型可能会改善这种二分法的区分,但现有的模型仅适用于首次无诱因血栓形成的患者。我们旨在为所有首次发生 VTE 的患者(无论是有诱因还是无诱因)开发一种预测模型。
我们使用了来自荷兰两个基于人群的首次 VTE 患者队列的数据(从 1994 年至 2009 年进行的多环境和遗传评估危险因素静脉血栓栓塞症[MEGA]随访研究;模型推导;n=3750)和挪威的 Tromsø 研究(从 1999 年至 2016 年进行;模型验证;n=663)。我们开发了四种 VTE 预测模型版本:模型 A(临床、实验室和遗传变量)、模型 B(临床变量和较少的实验室标志物)、模型 C(临床和遗传因素)和模型 D(仅临床变量)。观察终点为复发性 VTE。为了确定判别能力,计算了 Harrell 的 C 统计量。为每位患者评估了预后评分。根据预后评分的五分位数绘制了观察到的复发风险的 Kaplan-Meier 图。对于每位患者,计算了 2 年的预测复发风险。在 Tromsø 研究中对模型 C 和模型 D 进行了验证。在 MEGA 研究的 19201 人年随访期间(中位随访时间为 5.7 年),发生了 507 例复发。模型 A 具有最高的预测能力,C 统计量为 0.73(95%CI 0.71-0.76)。其他模型的判别性能略低,模型 B 的 C 统计量为 0.72,模型 C 的 C 统计量为 0.70,模型 D 的 C 统计量为 0.69。内部验证显示出最小程度的乐观偏差。模型 C 和模型 D 进行了外部验证,C 统计量分别为 0.64(95%CI 0.62-0.66)和 0.65(95%CI 0.63-0.66)。根据模型 C,在 2592 例有诱因首发事件的患者中,有 367(15%)例患者 2 年预测风险>10%,而在 1082 例无诱因首发事件的患者中,有 484(45%)例患者 2 年预测风险<10%。两个队列的一个局限性是,相当一部分患者的实验室检测结果缺失,因此这些数据被推断出来。
我们提出的预测模型适用于有诱因或无诱因首发 VTE 的患者(除了有(既往)癌症的患者)-允许进行更精细的风险分层,并且易于使用。为了进行最佳的个体化治疗,需要进行一项考虑出血风险的管理研究。