Department Biochemistry and Microbiology, University of Victoria, BC V8W 3P6, Canada.
BC Cancer Agency Genome Sciences Centre and the Department of Microbiology & Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
Genetics. 2019 Dec;213(4):1301-1316. doi: 10.1534/genetics.119.302235. Epub 2019 Oct 11.
Gene duplications increase organismal robustness by providing freedom for gene divergence or by increasing gene dosage. The yeast histone chaperones Fpr3 and Fpr4 are paralogs that can assemble nucleosomes ; however, the genomic locations they target and their functional relationship is poorly understood. We refined the yeast synthetic genetic array approach to enable the functional dissection of gene paralogs. Applying this method to Fpr3 and Fpr4 uncovered redundant, cooperative, and divergent functions. While Fpr3 is uniquely involved in chromosome segregation, Fpr3 and Fpr4 cooperate to regulate genes involved in polyphosphate metabolism and ribosome biogenesis. We find that the TRAMP5 RNA exosome is critical for fitness in ΔΔ yeast and leverage this information to identify an important role for Fpr4 at the 5' ends of protein coding genes. Additionally, Fpr4 and TRAMP5 negatively regulate RNAs from the nontranscribed spacers of ribosomal DNA. Yeast lacking Fpr3 and Fpr4 exhibit a genome instability phenotype at the ribosomal DNA, which implies that these histone chaperones regulate chromatin structure and DNA access at this location. Taken together. we provide genetic and transcriptomic evidence that Fpr3 and Fpr4 operate separately, cooperatively, and redundantly to regulate a variety of chromatin environments.
基因复制通过提供基因变异的自由或增加基因剂量来增加生物的稳健性。酵母组蛋白伴侣 Fpr3 和 Fpr4 是可以组装核小体的旁系同源物;然而,它们的靶基因组位置及其功能关系还了解甚少。我们改进了酵母合成遗传阵列方法,以实现基因旁系同源物的功能剖析。将这种方法应用于 Fpr3 和 Fpr4,揭示了它们具有冗余、协作和不同的功能。虽然 Fpr3 独特地参与染色体分离,但 Fpr3 和 Fpr4 合作调节参与多磷酸盐代谢和核糖体生物发生的基因。我们发现 TRAMP5 RNA 外切体对 ΔΔ 酵母的适应性至关重要,并利用这一信息确定 Fpr4 在蛋白质编码基因 5' 端的重要作用。此外,Fpr4 和 TRAMP5 负调控核糖体 DNA 非转录间隔区的 RNA。缺乏 Fpr3 和 Fpr4 的酵母在核糖体 DNA 处表现出基因组不稳定性表型,这意味着这些组蛋白伴侣调节该位置的染色质结构和 DNA 可及性。总之,我们提供了遗传和转录组证据,表明 Fpr3 和 Fpr4 分别、协作和冗余地运作,以调节各种染色质环境。