Texas Biomedical Research Institute, San Antonio, Texas, United States of America.
Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America.
PLoS Genet. 2019 Oct 14;15(10):e1008453. doi: 10.1371/journal.pgen.1008453. eCollection 2019 Oct.
Determining the genetic basis of fitness is central to understanding evolution and transmission of microbial pathogens. In human malaria parasites (Plasmodium falciparum), most experimental work on fitness has focused on asexual blood stage parasites, because this stage can be easily cultured, although the transmission of malaria requires both female Anopheles mosquitoes and vertebrate hosts. We explore a powerful approach to identify the genetic determinants of parasite fitness across both invertebrate and vertebrate life-cycle stages of P. falciparum. This combines experimental genetic crosses using humanized mice, with selective whole genome amplification and pooled sequencing to determine genome-wide allele frequencies and identify genomic regions under selection across multiple lifecycle stages. We applied this approach to genetic crosses between artemisinin resistant (ART-R, kelch13-C580Y) and ART-sensitive (ART-S, kelch13-WT) parasites, recently isolated from Southeast Asian patients. Two striking results emerge: we observed (i) a strong genome-wide skew (>80%) towards alleles from the ART-R parent in the mosquito stage, that dropped to ~50% in the blood stage as selfed ART-R parasites were selected against; and (ii) repeatable allele specific skews in blood stage parasites with particularly strong selection (selection coefficient (s) ≤ 0.18/asexual cycle) against alleles from the ART-R parent at loci on chromosome 12 containing MRP2 and chromosome 14 containing ARPS10. This approach robustly identifies selected loci and has strong potential for identifying parasite genes that interact with the mosquito vector or compensatory loci involved in drug resistance.
确定适合度的遗传基础是理解微生物病原体进化和传播的核心。在人类疟疾寄生虫(恶性疟原虫)中,大多数关于适合度的实验工作都集中在无性血期寄生虫上,因为这个阶段很容易培养,尽管疟疾的传播需要雌性按蚊和脊椎动物宿主。我们探索了一种强大的方法,可以识别恶性疟原虫在无脊椎动物和脊椎动物生命周期阶段的寄生虫适合度的遗传决定因素。这种方法结合了使用人源化小鼠进行实验性遗传杂交,以及选择性全基因组扩增和池测序,以确定全基因组等位基因频率,并识别多个生命周期阶段的选择基因组区域。我们将这种方法应用于最近从东南亚患者中分离出的抗青蒿素(ART-R,kelch13-C580Y)和对青蒿素敏感(ART-S,kelch13-WT)寄生虫之间的遗传杂交。出现了两个惊人的结果:我们观察到(i)在蚊子阶段,来自 ART-R 亲本的等位基因在全基因组范围内存在强烈的倾斜(>80%),而在自交的 ART-R 寄生虫被选择时,这种倾斜下降到约 50%;(ii)在血液阶段寄生虫中存在可重复的等位基因特异性倾斜,特别是在对来自 ART-R 亲本的等位基因具有强烈选择(选择系数(s)≤0.18/无性周期)的情况下,在包含 MRP2 的 12 号染色体和包含 ARPS10 的 14 号染色体上的位置。这种方法可以稳健地识别选择的基因座,并且具有识别与蚊子媒介相互作用或参与药物抗性的补偿基因座的寄生虫基因的强大潜力。