Abelson Alex, Qian Caroline, Salk Trenton, Luan Zhongyue, Fu Kan, Zheng Jian-Guo, Wardini Jenna L, Law Matt
Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA, USA.
Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, USA.
Nat Mater. 2020 Jan;19(1):49-55. doi: 10.1038/s41563-019-0485-2. Epub 2019 Oct 14.
Epitaxially fused colloidal quantum dot (QD) superlattices (epi-SLs) may enable a new class of semiconductors that combine the size-tunable photophysics of QDs with bulk-like electronic performance, but progress is hindered by a poor understanding of epi-SL formation and surface chemistry. Here we use X-ray scattering and correlative electron imaging and diffraction of individual SL grains to determine the formation mechanism of three-dimensional PbSe QD epi-SL films. We show that the epi-SL forms from a rhombohedrally distorted body centred cubic parent SL via a phase transition in which the QDs translate with minimal rotation (~10°) and epitaxially fuse across their {100} facets in three dimensions. This collective epitaxial transformation is atomically topotactic across the 10-10 QDs in each SL grain. Infilling the epi-SLs with alumina by atomic layer deposition greatly changes their electrical properties without affecting the superlattice structure. Our work establishes the formation mechanism of three-dimensional QD epi-SLs and illustrates the critical importance of surface chemistry to charge transport in these materials.
外延融合的胶体量子点(QD)超晶格(epi-SL)可能会催生一类新型半导体,这类半导体将量子点尺寸可调的光物理特性与类似体材料的电子性能相结合,但由于对外延超晶格的形成和表面化学了解不足,进展受到阻碍。在此,我们利用X射线散射以及对单个超晶格晶粒的相关电子成像和衍射技术,来确定三维PbSe量子点外延超晶格薄膜的形成机制。我们发现,外延超晶格由菱面体畸变的体心立方母超晶格通过相变形成,在此过程中量子点平移时旋转极小(约10°),并在三维空间中沿其{100}晶面外延融合。这种集体外延转变在每个超晶格晶粒中的10 - 10个量子点上都是原子拓扑规整的。通过原子层沉积用氧化铝填充外延超晶格,可极大地改变其电学性质,而不影响超晶格结构。我们的工作确立了三维量子点外延超晶格的形成机制,并阐明了表面化学对这些材料中电荷传输的至关重要性。