Chen Wei, Tang Haodong, Li Nian, Scheel Manuel A, Xie Yue, Li Depeng, Körstgens Volker, Schwartzkopf Matthias, Roth Stephan V, Wang Kai, Sun Xiao Wei, Müller-Buschbaum Peter
Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany.
Nanoscale Horiz. 2020 May 1;5(5):880-885. doi: 10.1039/d0nh00008f. Epub 2020 Mar 4.
Colloidal PbS quantum dots (QDs) are attractive for solution-processed thin-film optoelectronic applications. In particular, directly achieving QD thin-films by printing is a very promising method for low-cost and large-scale fabrication. The kinetics of QD particles during the deposition process play an important role in the QD film quality and their respective optoelectronic performance. In this work, the particle self-organization behavior of small-sized QDs with an average diameter of 2.88 ± 0.36 nm is investigated for the first time in situ during printing by grazing-incidence small-angle X-ray scattering (GISAXS). The time-dependent changes in peak intensities suggest that the structure formation and phase transition of QD films happen within 30 seconds. The stacking of QDs is initialized by a templating effect, and a face-centered cubic (FCC) film forms in which a superlattice distortion is also found. A body-centered cubic nested FCC stacking is the final QD assembly layout. The small size of the inorganic QDs and the ligand collapse during the solvent evaporation can well explain this stacking behavior. These results provide important fundamental understanding of structure formation of small-sized QD based films prepared via large-scale deposition with printing with a slot die coater.
胶体硫化铅量子点(QDs)对于溶液处理的薄膜光电子应用具有吸引力。特别是,通过印刷直接制备量子点薄膜是一种非常有前景的低成本大规模制造方法。量子点颗粒在沉积过程中的动力学对量子点薄膜质量及其各自的光电子性能起着重要作用。在这项工作中,首次通过掠入射小角X射线散射(GISAXS)在印刷过程中原位研究了平均直径为2.88±0.36 nm的小尺寸量子点的颗粒自组织行为。峰强度随时间的变化表明量子点薄膜的结构形成和相变在30秒内发生。量子点的堆叠通过模板效应初始化,形成面心立方(FCC)薄膜,其中还发现了超晶格畸变。体心立方嵌套面心立方堆叠是最终的量子点组装布局。无机量子点的小尺寸以及溶剂蒸发过程中的配体坍塌可以很好地解释这种堆叠行为。这些结果为通过狭缝模头涂布机印刷进行大规模沉积制备的基于小尺寸量子点的薄膜的结构形成提供了重要的基础理解。