Leven Itai, Head-Gordon Teresa
Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.
J Phys Chem Lett. 2019 Nov 7;10(21):6820-6826. doi: 10.1021/acs.jpclett.9b02771. Epub 2019 Oct 21.
We have developed a new coarse-grained electron model, C-GeM, in which atoms are represented by a positive core and an electron shell described by Gaussian charge distributions, with the interaction energy between the core and shell reflecting the electronegativity of a given atomic element. By minimizing the electronic shell positions in the field of atomic core positions, the model can provide accurate electrostatic properties of molecules and their interactions. We have tested the performance of the C-GeM model for a set of molecules containing H, C, O, and Cl atoms to show that it can predict the electrostatic potential with high accuracy, and correctly describe the dissociation of HCl into ionic fragments in solution and to neutral atoms in the gas phase. The resulting C-GeM approach offers many advantages over expensive methods and reactive force field charge equilibration methodologies: it can rapidly predict the electrostatic potential surfaces of molecules, molecules dissociate into integer charge fragments so that redox reactions are easily described, there is no unphysical long-range charge transfer, it can account for out-of-plane polarization, and charges are not required to be centered on atoms, thereby accounting for electrostatic features such as sigma holes.
我们开发了一种新的粗粒度电子模型C-GeM,其中原子由一个正原子核和一个由高斯电荷分布描述的电子壳层表示,原子核与壳层之间的相互作用能反映了给定原子元素的电负性。通过在原子核位置场中最小化电子壳层位置,该模型可以提供分子及其相互作用的精确静电性质。我们对一组包含H、C、O和Cl原子的分子测试了C-GeM模型的性能,结果表明它能够高精度地预测静电势,并正确描述HCl在溶液中解离为离子碎片以及在气相中解离为中性原子的过程。由此产生的C-GeM方法相对于昂贵的方法和反应力场电荷平衡方法具有许多优势:它可以快速预测分子的静电势面,分子解离为整数电荷碎片,从而易于描述氧化还原反应,不存在非物理的长程电荷转移,它可以考虑面外极化,并且电荷不需要集中在原子上,从而能够解释诸如σ空穴等静电特征。