Lehrstuhl für Physkalische Chemie II, Ruhr Universität Bochum, 44801, Bochum, Germany.
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA.
Angew Chem Int Ed Engl. 2021 Nov 22;60(48):25419-25427. doi: 10.1002/anie.202108766. Epub 2021 Oct 4.
The properties of the water network in concentrated HCl acid pools in nanometer-sized reverse nonionic micelles were probed with TeraHertz absorption, dielectric relaxation spectroscopy, and reactive force field simulations capable of describing proton hopping mechanisms. We identify that only at a critical micelle size of W =9 do solvated proton complexes form in the water pool, accompanied by a change in mechanism from Grotthuss forward shuttling to one that favors local oscillatory hopping. This is due to a preference for H and Cl ions to adsorb to the micelle interface, together with an acid concentration effect that causes a "traffic jam" in which the short-circuiting of the hydrogen-bonding motif of the hydronium ion decreases the forward hopping rate throughout the water interior even as the micelle size increases. These findings have implications for atmospheric chemistry, biochemical and biophysical environments, and energy materials, as transport of protons vital to these processes can be suppressed due to confinement, aggregation, and/or concentration.
我们利用太赫兹吸收、介电弛豫光谱和能够描述质子跳跃机制的反应力场模拟研究了纳米尺寸反离子非胶束中浓 HCl 酸池中水分子网络的性质。我们发现,只有在临界胶束尺寸 W=9 时,水相中才会形成溶剂化质子配合物,同时质子跳跃机制从 Grotthuss 正向跃迁转变为更有利于局部振荡跃迁的机制。这是由于 H 和 Cl 离子优先吸附到胶束界面上,加上酸浓度的影响,导致“交通堵塞”,即质子化氢离子的氢键模式的短路会降低整个水相内部的正向跳跃速率,尽管胶束尺寸增加。这些发现对于大气化学、生化和生物物理环境以及能源材料都有意义,因为对于这些过程至关重要的质子传输由于受限、聚集和/或浓度而受到抑制。