Suppr超能文献

卫生技术评估中的倾向得分方法:原理、扩展应用及最新进展

Propensity Score Methods in Health Technology Assessment: Principles, Extended Applications, and Recent Advances.

作者信息

Ali M Sanni, Prieto-Alhambra Daniel, Lopes Luciane Cruz, Ramos Dandara, Bispo Nivea, Ichihara Maria Y, Pescarini Julia M, Williamson Elizabeth, Fiaccone Rosemeire L, Barreto Mauricio L, Smeeth Liam

机构信息

Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom.

Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), Center for Statistics in Medicine (CSM), University of Oxford, Oxford, United Kingdom.

出版信息

Front Pharmacol. 2019 Sep 18;10:973. doi: 10.3389/fphar.2019.00973. eCollection 2019.

Abstract

Randomized clinical trials (RCT) are accepted as the gold-standard approaches to measure effects of intervention or treatment on outcomes. They are also the designs of choice for health technology assessment (HTA). Randomization ensures comparability, in both measured and unmeasured pretreatment characteristics, of individuals assigned to treatment and control or comparator. However, even adequately powered RCTs are not always feasible for several reasons such as cost, time, practical and ethical constraints, and limited generalizability. RCTs rely on data collected on selected, homogeneous population under highly controlled conditions; hence, they provide evidence on efficacy of interventions rather than on effectiveness. Alternatively, observational studies can provide evidence on the relative effectiveness or safety of a health technology compared to one or more alternatives when provided under the setting of routine health care practice. In observational studies, however, treatment assignment is a non-random process based on an individual's baseline characteristics; hence, treatment groups may not be comparable in their pretreatment characteristics. As a result, direct comparison of outcomes between treatment groups might lead to biased estimate of the treatment effect. Propensity score approaches have been used to achieve balance or comparability of treatment groups in terms of their measured pretreatment covariates thereby controlling for confounding bias in estimating treatment effects. Despite the popularity of propensity scores methods and recent important methodological advances, misunderstandings on their applications and limitations are all too common. In this article, we present a review of the propensity scores methods, extended applications, recent advances, and their strengths and limitations.

摘要

随机临床试验(RCT)被公认为衡量干预措施或治疗对结局影响的金标准方法。它们也是卫生技术评估(HTA)的首选设计。随机化可确保在测量和未测量的治疗前特征方面,被分配到治疗组和对照组或比较组的个体具有可比性。然而,由于成本、时间、实际和伦理限制以及可推广性有限等多种原因,即使是样本量充足的随机临床试验也并非总是可行的。随机临床试验依赖于在高度受控条件下对选定的同质人群收集的数据;因此,它们提供的是关于干预措施疗效的证据,而非有效性的证据。相比之下,观察性研究可以在常规医疗实践环境中提供一种卫生技术与一种或多种替代技术相比的相对有效性或安全性的证据。然而,在观察性研究中,治疗分配是基于个体基线特征的非随机过程;因此,治疗组在治疗前特征方面可能不具有可比性。结果,治疗组之间结局的直接比较可能会导致对治疗效果的有偏估计。倾向得分方法已被用于在测量的治疗前协变量方面实现治疗组的平衡或可比性,从而在估计治疗效果时控制混杂偏倚。尽管倾向得分方法很受欢迎且最近在方法学上有重要进展,但对其应用和局限性的误解却非常普遍。在本文中,我们对倾向得分方法、扩展应用、最新进展及其优势和局限性进行了综述。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ce2/6760465/bbfe49c7cbaf/fphar-10-00973-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验