Suppr超能文献

植物根系中离子与水分运输的综合生物物理模型。II. 阐明SOS1在盐胁迫响应中的作用

A Comprehensive Biophysical Model of Ion and Water Transport in Plant Roots. II. Clarifying the Roles of SOS1 in the Salt-Stress Response in .

作者信息

Foster Kylie J, Miklavcic Stanley J

机构信息

Phenomics and Bioinformatics Research Centre, School of Information Technology and Mathematics Sciences, University of South Australia, Mawson Lakes, WA, Australia.

出版信息

Front Plant Sci. 2019 Sep 18;10:1121. doi: 10.3389/fpls.2019.01121. eCollection 2019.

Abstract

SOS1 transporters play an essential role in plant salt tolerance. Although is known to encode a plasma membrane Na/H antiporter, the transport mechanisms by which these transporters contribute to salt tolerance at the level of the whole root are unclear. Gene expression and flux measurements have provided conflicting evidence for the location of SOS1 transporter activity, making it difficult to determine their function. Whether SOS1 transporters load or unload Na from the root xylem transpiration stream is also disputed. To address these areas of contention, we applied a mathematical model to answer the question: what is the function of SOS1 transporters in salt-stressed roots? We used our biophysical model of ion and water transport in a salt-stressed root to simulate a wide range of SOS1 transporter locations in a model root, providing a level of detail that cannot currently be achieved by experimentation. We compared our simulations with available experimental data to find reasonable parameters for the model and to determine likely locations of SOS1 transporter activity. We found that SOS1 transporters are likely to be operating in at least one tissue of the outer mature root, in the mature stele, and in the epidermis of the root apex. SOS1 transporter activity in the mature outer root cells is essential to maintain low cytosolic Na levels in the root and also restricts the uptake of Na to the shoot. SOS1 transporters in the stele actively load Na into the xylem transpiration stream, enhancing the transport of Na and water to the shoot. SOS1 transporters acting in the apex restrict cytosolic Na concentrations in the apex but are unable to maintain low cytosolic Na levels in the mature root. Our findings suggest that targeted, tissue-specific overexpression or knockout of may lead to greater salt tolerance than has been achieved with constitutive gene changes. Tissue-specific changes to the expression of could be used to identify the appropriate balance between limiting Na uptake to the shoot while maintaining water uptake, potentially leading to enhancements in salt tolerance.

摘要

SOS1转运蛋白在植物耐盐性中起着至关重要的作用。尽管已知其编码一种质膜Na⁺/H⁺逆向转运蛋白,但这些转运蛋白在整个根系水平上对耐盐性的贡献机制尚不清楚。基因表达和通量测量为SOS1转运蛋白活性的位置提供了相互矛盾的证据,难以确定其功能。SOS1转运蛋白是从根木质部蒸腾流中装载还是卸载Na⁺也存在争议。为了解决这些争议领域,我们应用了一个数学模型来回答问题:SOS1转运蛋白在盐胁迫根系中的功能是什么?我们使用盐胁迫根系中离子和水分运输的生物物理模型,在模型根系中模拟了SOS1转运蛋白的广泛位置,提供了目前实验无法达到的详细程度。我们将模拟结果与现有实验数据进行比较,以找到模型的合理参数,并确定SOS1转运蛋白活性的可能位置。我们发现,SOS1转运蛋白可能在成熟根外层的至少一种组织、成熟的中柱以及根尖的表皮中发挥作用。成熟根外层细胞中的SOS1转运蛋白活性对于维持根中低的胞质Na⁺水平至关重要,并且还限制了Na⁺向地上部的吸收。中柱中的SOS1转运蛋白将Na⁺主动装载到木质部蒸腾流中,增强了Na⁺和水分向地上部的运输。作用于根尖的SOS1转运蛋白限制了根尖中的胞质Na⁺浓度,但无法维持成熟根中低的胞质Na⁺水平。我们的研究结果表明,针对性的、组织特异性的过表达或敲除可能比组成型基因改变导致更高的耐盐性。对SOS1表达进行组织特异性改变可用于确定在限制Na⁺向地上部吸收同时维持水分吸收之间的适当平衡,这可能会提高耐盐性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41df/6759596/c378dca96582/fpls-10-01121-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验