Mol Pharm. 2019 Dec 2;16(12):5000-5012. doi: 10.1021/acs.molpharmaceut.9b00860. Epub 2019 Oct 25.
Nanoparticle-based vaccine delivery systems have been extensively used to promote and induce immune responses to protein antigens. The properties of the nanoparticles, such as size, surface charge, and antigen loading mode, have been proved to significantly influence the adjuvant effect and immunoreactivity of nanoparticle-based vaccine delivery systems. The purpose of the study was to investigate how the surface charge and antigen loading mode of nanoparticles impact the immune responses. In this study, three ovalbumin (OVA)-loaded poly(lactic--glycolic acid) (PLGA) nanoparticles with different surface charges and antigen loading modes were developed. The three nanoparticles were designed as antigen encapsulated with negatively charged (Angelica sinensis polysaccharide (ASP)-PLGA/OVA), antigen encapsulated with polyethylenimine (PEI)-coated (ASP-PLGA/OVA-PEI), and antigen adsorbed on PEI-coated (ASP-PLGA-PEI-OVA) nanoparticles. The Angelica sinensis polysaccharide (ASP) was used as the immunopotentiator and encapsulated into three nanoparticles. The results demonstrated that both PEI-coated (positively charged) nanoparticles promoted the antigen escape from the endosome, which led to the cytoplasmic antigen delivery to generate cross presentation, compared to negatively charged nanoparticles. In addition, PEI-coated nanoparticles activated the DCs in lymph nodes 5 days after the primary vaccination. In vivo experiments demonstrated that both antigen-encapsulated nanoparticles induced more potent and long-term antigen-specific antibody responses, compared to that of antigen-adsorbed nanoparticles. Thus, the PEI-coated and antigen-encapsulated nanoparticles (ASP-PLGA/OVA-PEI) as a vaccine adjuvant delivery system have the potential to induce strong and long-term humoral and cellular immune responses.
基于纳米粒子的疫苗传递系统已被广泛用于促进和诱导针对蛋白质抗原的免疫反应。纳米粒子的特性,如大小、表面电荷和抗原加载模式,已被证明会显著影响基于纳米粒子的疫苗传递系统的佐剂效果和免疫反应性。本研究旨在探讨纳米粒子的表面电荷和抗原加载模式如何影响免疫反应。在这项研究中,开发了三种具有不同表面电荷和抗原加载模式的载卵清白蛋白(OVA)的聚乳酸-羟基乙酸共聚物(PLGA)纳米粒子。这三种纳米粒子设计为用带负电荷的抗原包封(当归多糖(ASP)-PLGA/OVA)、用带正电荷的聚乙二胺(PEI)包被的抗原包封(ASP-PLGA/OVA-PEI)和抗原吸附在带正电荷的 PEI 包被的纳米粒子(ASP-PLGA-PEI-OVA)上。当归多糖(ASP)被用作免疫佐剂并包封在三种纳米粒子中。结果表明,与带负电荷的纳米粒子相比,PEI 包被的(带正电荷的)纳米粒子促进了抗原从内体逃逸,从而导致细胞质内抗原递呈产生交叉呈递。此外,PEI 包被的纳米粒子在初次接种后 5 天激活了淋巴结中的 DC。体内实验表明,与抗原吸附的纳米粒子相比,两种抗原包封的纳米粒子都能诱导更强和更持久的抗原特异性抗体反应。因此,PEI 包被和抗原包封的纳米粒子(ASP-PLGA/OVA-PEI)作为疫苗佐剂传递系统具有诱导强烈和长期体液和细胞免疫反应的潜力。
Chem Mater. 2024-10-8
J Nanobiotechnology. 2024-8-12
Polymers (Basel). 2024-4-30
Pharmaceuticals (Basel). 2024-1-30
Pharmaceutics. 2024-2-15