文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

聚乳酸-乙醇酸共聚物纳米粒疫苗给药系统的合理设计,以改善免疫应答。

Rational Design of PLGA Nanoparticle Vaccine Delivery Systems To Improve Immune Responses.

出版信息

Mol Pharm. 2019 Dec 2;16(12):5000-5012. doi: 10.1021/acs.molpharmaceut.9b00860. Epub 2019 Oct 25.


DOI:10.1021/acs.molpharmaceut.9b00860
PMID:31621331
Abstract

Nanoparticle-based vaccine delivery systems have been extensively used to promote and induce immune responses to protein antigens. The properties of the nanoparticles, such as size, surface charge, and antigen loading mode, have been proved to significantly influence the adjuvant effect and immunoreactivity of nanoparticle-based vaccine delivery systems. The purpose of the study was to investigate how the surface charge and antigen loading mode of nanoparticles impact the immune responses. In this study, three ovalbumin (OVA)-loaded poly(lactic--glycolic acid) (PLGA) nanoparticles with different surface charges and antigen loading modes were developed. The three nanoparticles were designed as antigen encapsulated with negatively charged (Angelica sinensis polysaccharide (ASP)-PLGA/OVA), antigen encapsulated with polyethylenimine (PEI)-coated (ASP-PLGA/OVA-PEI), and antigen adsorbed on PEI-coated (ASP-PLGA-PEI-OVA) nanoparticles. The Angelica sinensis polysaccharide (ASP) was used as the immunopotentiator and encapsulated into three nanoparticles. The results demonstrated that both PEI-coated (positively charged) nanoparticles promoted the antigen escape from the endosome, which led to the cytoplasmic antigen delivery to generate cross presentation, compared to negatively charged nanoparticles. In addition, PEI-coated nanoparticles activated the DCs in lymph nodes 5 days after the primary vaccination. In vivo experiments demonstrated that both antigen-encapsulated nanoparticles induced more potent and long-term antigen-specific antibody responses, compared to that of antigen-adsorbed nanoparticles. Thus, the PEI-coated and antigen-encapsulated nanoparticles (ASP-PLGA/OVA-PEI) as a vaccine adjuvant delivery system have the potential to induce strong and long-term humoral and cellular immune responses.

摘要

基于纳米粒子的疫苗传递系统已被广泛用于促进和诱导针对蛋白质抗原的免疫反应。纳米粒子的特性,如大小、表面电荷和抗原加载模式,已被证明会显著影响基于纳米粒子的疫苗传递系统的佐剂效果和免疫反应性。本研究旨在探讨纳米粒子的表面电荷和抗原加载模式如何影响免疫反应。在这项研究中,开发了三种具有不同表面电荷和抗原加载模式的载卵清白蛋白(OVA)的聚乳酸-羟基乙酸共聚物(PLGA)纳米粒子。这三种纳米粒子设计为用带负电荷的抗原包封(当归多糖(ASP)-PLGA/OVA)、用带正电荷的聚乙二胺(PEI)包被的抗原包封(ASP-PLGA/OVA-PEI)和抗原吸附在带正电荷的 PEI 包被的纳米粒子(ASP-PLGA-PEI-OVA)上。当归多糖(ASP)被用作免疫佐剂并包封在三种纳米粒子中。结果表明,与带负电荷的纳米粒子相比,PEI 包被的(带正电荷的)纳米粒子促进了抗原从内体逃逸,从而导致细胞质内抗原递呈产生交叉呈递。此外,PEI 包被的纳米粒子在初次接种后 5 天激活了淋巴结中的 DC。体内实验表明,与抗原吸附的纳米粒子相比,两种抗原包封的纳米粒子都能诱导更强和更持久的抗原特异性抗体反应。因此,PEI 包被和抗原包封的纳米粒子(ASP-PLGA/OVA-PEI)作为疫苗佐剂传递系统具有诱导强烈和长期体液和细胞免疫反应的潜力。

相似文献

[1]
Rational Design of PLGA Nanoparticle Vaccine Delivery Systems To Improve Immune Responses.

Mol Pharm. 2019-10-25

[2]
Polyethylenimine-coated PLGA nanoparticles-encapsulated Angelica sinensis polysaccharide as an adjuvant to enhance immune responses.

Carbohydr Polym. 2019-7-27

[3]
Polyethylenimine-coated PLGA nanoparticles-encapsulated Angelica sinensis polysaccharide as an adjuvant for H9N2 vaccine to improve immune responses in chickens compared to Alum and oil-based adjuvants.

Vet Microbiol. 2020-12

[4]
Angelica sinensis polysaccharide encapsulated into PLGA nanoparticles as a vaccine delivery and adjuvant system for ovalbumin to promote immune responses.

Int J Pharm. 2018-11-3

[5]
Cationic polymer modified PLGA nanoparticles encapsulating Alhagi honey polysaccharides as a vaccine delivery system for ovalbumin to improve immune responses.

Int J Nanomedicine. 2019-5-6

[6]
Administration Routes of Polyethylenimine-Coated PLGA Nanoparticles Encapsulating Angelica Sinensis Polysaccharide Vaccine Delivery System Affect Immune Responses.

Mol Pharm. 2021-6-7

[7]
The Immunoenhancement Effects of Polyethylenimine-Modified Chinese Yam Polysaccharide-Encapsulated PLGA Nanoparticles as an Adjuvant.

Int J Nanomedicine. 2020-8-5

[8]
Polymer nanoparticles for cross-presentation of exogenous antigens and enhanced cytotoxic T-lymphocyte immune response.

Int J Nanomedicine. 2016-8-5

[9]
Improved vaccine-induced immune responses via a ROS-triggered nanoparticle-based antigen delivery system.

Nanoscale. 2018-5-24

[10]
PEI-modified macrophage cell membrane-coated PLGA nanoparticles encapsulating Dendrobium polysaccharides as a vaccine delivery system for ovalbumin to improve immune responses.

Int J Biol Macromol. 2020-12-15

引用本文的文献

[1]
A comprehensive review on plant-derived bioactive saponins as promising antimicrobial agents: from bioavailability challenges, molecular mechanistic insights to therapeutic applications.

Naunyn Schmiedebergs Arch Pharmacol. 2025-8-21

[2]
Synthetic organic materials for targeting immunotherapies to lymph nodes.

Chem Mater. 2024-10-8

[3]
Immunomodulatory nanoparticles activate cytotoxic T cells for enhancement of the effect of cancer immunotherapy.

Nanoscale. 2024-10-3

[4]
Recent Review on Biological Barriers and Host-Material Interfaces in Precision Drug Delivery: Advancement in Biomaterial Engineering for Better Treatment Therapies.

Pharmaceutics. 2024-8-16

[5]
Tailoring biomaterials for vaccine delivery.

J Nanobiotechnology. 2024-8-12

[6]
Application of PLGA in Tumor Immunotherapy.

Polymers (Basel). 2024-4-30

[7]
Potential of DPD ((S)-4,5-dihydroxy-2,3-pentanedione) Analogs in Microparticulate Formulation as Vaccine Adjuvants.

Pharmaceuticals (Basel). 2024-1-30

[8]
Harnessing the Potential of PLGA Nanoparticles for Enhanced Bone Regeneration.

Pharmaceutics. 2024-2-15

[9]
Polymer Chemistry Defines Adjuvant Properties and Determines the Immune Response against the Antigen or Vaccine.

Vaccines (Basel). 2023-8-22

[10]
Live Cell Imaging by Förster Resonance Energy Transfer Fluorescence to Study Trafficking of PLGA Nanoparticles and the Release of a Loaded Peptide in Dendritic Cells.

Pharmaceuticals (Basel). 2023-5-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索