使用基于FHIR的类型系统整合结构化和非结构化电子健康记录数据:用药数据案例研究
Integrating Structured and Unstructured EHR Data Using an FHIR-based Type System: A Case Study with Medication Data.
作者信息
Hong Na, Wen Andrew, Shen Feichen, Sohn Sunghwan, Liu Sijia, Liu Hongfang, Jiang Guoqian
机构信息
Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.
出版信息
AMIA Jt Summits Transl Sci Proc. 2018 May 18;2017:74-83. eCollection 2018.
Standards-based modeling of electronic health records (EHR) data holds great significance for data interoperability and large-scale usage. Integration of unstructured data into a standard data model, however, poses unique challenges partially due to heterogeneous type systems used in existing clinical NLP systems. We introduce a scalable and standards-based framework for integrating structured and unstructured EHR data leveraging the HL7 Fast Healthcare Interoperability Resources (FHIR) specification. We implemented a clinical NLP pipeline enhanced with an FHIR-based type system and performed a case study using medication data from Mayo Clinic's EHR. Two UIMA-based NLP tools known as MedXN and MedTime were integrated in the pipeline to extract FHIR MedicationStatement resources and related attributes from unstructured medication lists. We developed a rule-based approach for assigning the NLP output types to the FHIR elements represented in the type system, whereas we investigated the FHIR elements belonging to the source of the structured EMR data. We used the FHIR resource "MedicationStatement" as an example to illustrate our integration framework and methods. For evaluation, we manually annotated FHIR elements in 166 medication statements from 14 clinical notes generated by Mayo Clinic in the course of patient care, and used standard performance measures (precision, recall and f-measure). The F-scores achieved ranged from 0.73 to 0.99 for the various FHIR element representations. The results demonstrated that our framework based on the FHIR type system is feasible for normalizing and integrating both structured and unstructured EHR data.
基于标准的电子健康记录(EHR)数据建模对于数据互操作性和大规模使用具有重要意义。然而,将非结构化数据集成到标准数据模型中带来了独特的挑战,部分原因是现有临床自然语言处理(NLP)系统中使用的异构类型系统。我们引入了一个可扩展的、基于标准的框架,用于利用HL7快速医疗互操作性资源(FHIR)规范集成结构化和非结构化EHR数据。我们实现了一个通过基于FHIR的类型系统增强的临床NLP管道,并使用梅奥诊所EHR中的用药数据进行了案例研究。管道中集成了两个基于UIMA的NLP工具,即MedXN和MedTime,以从非结构化用药列表中提取FHIR用药声明资源和相关属性。我们开发了一种基于规则的方法,用于将NLP输出类型分配给类型系统中表示的FHIR元素,同时我们研究了属于结构化电子病历(EMR)数据源的FHIR元素。我们以FHIR资源“用药声明”为例来说明我们的集成框架和方法。为了进行评估,我们手动注释了梅奥诊所在患者护理过程中生成的14份临床记录中的166条用药声明中的FHIR元素,并使用了标准性能指标(精确率、召回率和F值)。对于各种FHIR元素表示,F值范围为0.73至0.99。结果表明,我们基于FHIR类型系统的框架对于规范化和集成结构化和非结构化EHR数据是可行的。